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Introduction

Field of Study: Computer Science and Mathematics, minor in Economics
Research Interests: broadly speaking, developing machine learning (ML) techniques to
support human tasks. My past research has been focused on the following (in temporal order):

Fairness and Equity: fairness in reinforcement learning (RL).
Interpretable ML: risk scores for critical care medicine.
Data Scarcity in Healthcare: synthetic electronic health records (EHRs) generation.
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Fairness in RL

Motivation
When an RL agent’s actions could affect multiple people, how can we enable it to produce a
socially fair outcome so that people are treated equitably?

Example
Recommendation systems, clinical trials, and patient care.
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Fairness in RL – Methodology

Formulation
Denote G(τ) =

∑T
t=1 γ

t−1R(st , at) ∈ Rd as the long-term return for trajectory
τ = {(s1, a1), (s2, a2), ..., (sT , aT )} and W : Rd → R be some nonlinear welfare function, where
R(s, a) : S ×A → Rd is the reward function, γ is the discount factor, and d is the number of
objectives (people). We aim to find an optimal fair policy π∗ that maximizes the expected welfare:

π∗ = argmax
π

Eτ∼π

[
W(G(τ))

]
(1)

Intuition: Originally designed to rank societies, W allows us scalarize the return and
incorporate fairness concepts defined by the specific function.

Examples: WNash(G(τ)) = (
∏d

i=1 G(τ)i)
1/d and Wegalitarian(G(τ)) = min{G(τ)i}d

i=1.
Related Work: [2, 26] focused on optimizing for the welfare of expectation,
maxπ W

(
Eτ∼π[G(τ)]

)
. This alternative objective could tolerate unfair outcomes within an

individual trajectory τ .
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Fairness in RL – Methodology

Challenge
Intractability: the proposed objective is difficult to optimize, specifically APX-hard, even in the
tabular setting (such as in a grid world) due to the nonlinearity of W .

Solution
Proposed an approximate algorithm based on Q-learning [29] to optimize for expected welfare.
The key components of the algorithm are:

Nonlinear updates of the Q-table, where η is the learning rate:

Qπ(s, a)← Qπ(s, a) + η[R(s, a) + γQπ(s′, a∗)− Qπ(s, a)], (2)
a∗ = argmax

a
W(γQπ(s′, a)). (3)

Non-stationary policy that considers the past history, where Racc =
∑t

k=1 γ
k−1R(sk , ak):

a = argmax
a′

W(Racc + γtQπ(s, a′)). (4)
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Fairness in RL – Results

Experimental
Designed simulation environments for evaluations (taxi).
Demonstrated the proposed approach outperforms baselines such as linearly scalarized [28],
stationary, and mixture policies [27].

Linearly scalarized: optimize each objective with Q-learning, take action
a = argmaxa′ w⊤Q(s, a′) for each state s.
Stationary: our proposed method, without using Racc for action selection.
Mixture: use the optimal policy for i th objective for J time steps.
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Fairness in RL – Results

(a) Comparisons (Nash welfare). (b) Comparisons (utilitarian welfare). (c) Effect of dimensionality.

Theoretical
Maximizing WNash(G(τ)) is APX-hard, even in a deterministic environment. This is found by
reducing the problem of allocating indivisible goods.
The algorithm converges (Banach’s Fixed Point Theorem [3]).
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Interpretable ML for Critical Care

Motivation
When ML models are used for high-stakes decisions, trustworthiness is vital due to issues of
accountability and transparency. An interpretable model could enable users to understand how
model predictions are made.

Example
Applications of ML models in settings that greatly influence people. Mortality risk prediction is
important for efficiency and quality of critical care.
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Interpretable ML for Critical Care – Methodology

Formulation
Denote D/m = {1/m, xi/m, yi}n

i=1 as a scaled dataset. The set of feature indices {1, ..., p} is
arbitrarily partitioned into Γ disjoint sets (groups), denoted as {Gk}Γk=1. The objective is to solve
sparse logistic regression with integer, sparsity, box, and group sparsity constraints:

min
w,w0,m

L(w ,w0,D/m) =
n∑

i=1
log

(
1 + exp

(
−yi

w⊤xi + w0
m

))
s.t. ∥w∥0 ≤ λ,w ∈ Zp,w0 ∈ Z # at most λ integer coefficients (5)

wj ∈ [aj , bj ] ∀j ∈ {1, ..., p} # control range of coefficients (6)
m > 0 # expand solution space using multiplier (7)
Γ∑

k=1
I {wGk ̸= 0} ≤ γ. # at most γ groups, where Gk are the indices of group k (8)
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Interpretable ML for Critical Care – Methodology

Intuition for predecessor – FasterRisk [19]
Integer constraint: enables fast calculation
of risk in practice, since adding up integers
is straightforward.
Sparsity constraint: allows users to
understand the final model since the final
solution w∗ involves at most λ non-zero
coefficients.
Box constraint: controls the solution space
and acts as regularization.
Multiplier m: expands the solution space.

(a) Predicting whether a person opens a bank account.

(b) Predicting salary >50K.
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Interpretable ML for Critical Care – Methodology

Challenges
Lack of cohesiveness: cannot control the number of group features in the final solution. This is
problematic when the sparsity constraint λ is large.

Solution
Allow users to define an arbitrary partition of the
feature indices {1, ..., p} as Γ groups, {Gk}Γk=1.
The user sets group sparsity constraint γ and
controls the number of groups used in the final
solution.

Γ∑
k=1

I {wGk ̸= 0} ≤ γ
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Interpretable ML for Critical Care – Methodology

Challenges
Domain knowledge: due to data noise, the final model could use counter-intuitive relationships
between a variable and risk.

Figure: Counter-intuitive scorecard for Glasgow Coma Scale.

Solution
Allow users to define
monotonicity constraints for
each component function
(row of the scorecard) so that
the component function of
interest obeys domain
medical knowledge.
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Interpretable ML for Critical Care – Results

Datasets: MIMIC III [16] for internal evaluation, eICU [23] for out-of-distribution testing.
Risk Score Baselines: OASIS [15], SAPS II [17], and APACHE IV/IVa [34].
ML Baselines: Logistic Regression, Explainable Boosting Machine [20], Random Forest [4],
AdaBoost [11], XGBoost [7], AutoScore [30], and OASIS+ [9].

Sparse Not Sparse

GFR-10 OASIS GFR-15 SAPS II GFR-40 APACHE IV APACHE IVa
F = 10 F = 10 F = 15 F = 17 F = 40 F = 142 F = 142

MIMIC III AUROC 0.813 ± 0.007 0.775 ± 0.008 0.836 ± 0.006 0.795 ± 0.009 0.858 ± 0.008
Test Folds AUPRC 0.368 ± 0.011 0.314 ± 0.014 0.403 ± 0.011 0.342 ± 0.012 0.443 ± 0.013

HL χ2 16.28 ± 2.51 146.16 ± 10.27 26.73 ± 6.38 691.45 ± 18.64 35.78 ± 11.01
SMR 0.992 ± 0.022 0.686 ± 0.008 0.996 ± 0.015 0.485 ± 0.005 1.002 ± 0.017
Sparsity 42 ± 0 47 48 ± 4.9 58 66 ± 8.0

eICU AUROC 0.844 0.805 0.859 0.844 0.864 0.871 0.873
Test Set AUPRC 0.437 0.361 0.476 0.433 0.495 0.487 0.489

Sparsity 34 47 50 58 80 ≥142 ≥142

Table: Comparison with baselines, where F is the number of features used.
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Interpretable ML for Critical Care – Results
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Figure: Performance vs. Complexity
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Interpretable ML for Critical Care – Results
Table: Fairness and calibration across population subgroups in eICU.

Ethnicity (alphabetical order) Gender

African American Asian Caucasian Hispanic Native American Other/Unknown Female Male

Percentage (%) 11.17 1.49 76.91 3.86 0.68 4.68 45.08 54.90

AUROC (↑) GFR-10 0.829 0.833 0.837 0.856 0.881 0.849 0.835 0.840
OASIS 0.811 0.797 0.803 0.825 0.824 0.809 0.806 0.805

GFR-15 0.846 0.848 0.854 0.873 0.895 0.860 0.853 0.856
SAPS II 0.846 0.828 0.843 0.859 0.893 0.842 0.844 0.845

GFR-40 0.859 0.861 0.859 0.881 0.902 0.873 0.857 0.865
APACHE IV 0.873 0.858 0.869 0.890 0.903 0.884 0.867 0.875
APACHE IVa 0.875 0.866 0.870 0.893 0.901 0.886 0.869 0.876

AUPRC (↑) GFR-10 0.415 0.390 0.422 0.480 0.558 0.418 0.418 0.429
OASIS 0.345 0.330 0.364 0.410 0.370 0.328 0.356 0.365

GFR-15 0.453 0.454 0.466 0.534 0.555 0.477 0.466 0.471
SAPS II 0.424 0.408 0.435 0.470 0.598 0.395 0.440 0.428

GFR-40 0.488 0.500 0.489 0.553 0.585 0.512 0.488 0.499
APACHE IV 0.488 0.467 0.484 0.536 0.536 0.479 0.478 0.493
APACHE IVa 0.487 0.492 0.487 0.538 0.522 0.484 0.481 0.496

HL χ2 (↓) GFR-10 27.90 11.00 113.70 24.68 5.48 12.53 58.65 102.74
OASIS 43.48 21.02 135.52 5.23 14.84 11.75 82.52 79.11

GFR-15 23.64 9.88 63.40 10.62 4.43 3.73 13.62 57.75
SAPS II 1070.09 94.34 6599.71 228.75 62.95 333.65 3575.48 4750.90

GFR-40 8.72 5.20 120.03 12.03 11.57 6.09 58.34 97.92
APACHE IV 308.51 34.51 1257.11 78.93 42.53 114.22 835.14 950.18
APACHE IVa 167.60 13.04 502.27 42.78 23.21 62.48 372.68 384.89
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Synthetic EHR Time Series Generation

Overview
Motivation: due to the sensitive nature of EHRs, privacy concerns and confidentiality regulations
pose major barriers to data access and sharing [1, 6].
Potential Solution: synthetic data generation can allow us to obtain a larger sample size while
protecting privacy. This can be done with deep generative models, given their ability to generate
realistic high-dimensional data [12, 31].

Example
Personal anecdote: accessing EHR at Duke
University requires CITI training and IRB protocols.
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Synthetic EHR Time Series Generation

Related Work
Generative adversarial networks (GANs):
RCGAN [10], EHR-Safe [32],
EHR-M-GAN [18], and medGAN [8].
Diffusion models (DMs) for discrete
variables such as international classification
of diseases (ICD) codes: MedDiff [13],
EHRDiff [33], ScoEHR [21], and
TabDDPM [5].

Goal
GANs could suffer from issues of training
instability and mode collapse [25].
EHR time series generation is relatively
under-explored.
Given the state-of-the-art performance of
DMs on image generation tasks [14, 22, 24],
is it possible to generate realistic EHR time
series with diffusion models?

Muhang Tian (Duke University) Interpretability, Fairness, and Data Scarcity in Machine Learning April 2024 21 / 36



Synthetic EHR Time Series Generation – Methodology

Mixed diffusion with time-conditional bidirectional recurrent neural network (BRNN).

Mixed Diffusion
Denote numerical and discrete multivariate time series as X ∈ RPr×L and C ∈ ZPd×L, respectively.
L is the number of time steps, and Pr and Pd are the number of variables for numerical and discrete
data types.

For X , apply Gaussian diffusion, the forward process is:

q
(
X (1:T)|X (0)) = T∏

t=1

L∏
l=1

q
(
X (t)
·,l |X

(t−1)
·,l

)
, (9)

where q(X (t)
·,l |X

(t−1)
·,l ) = N (X (t)

·,l ;
√

1− β(t)X (t−1)
·,l , β(t)I) and X·,l is the lth observation of the

numerical time series.
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Synthetic EHR Time Series Generation – Methodology

Mixed Diffusion (continued)
The reverse process is pθ(X (0:T)) = pθ(X (T))∏T

t=1 pθ

(
X (t−1)|X (t)), and

pθ

(
X (t−1)|X (t)) := N (X (t−1);µθ(X (t), t), β̃(t)I

)
,

µθ(X (t), t) =
1√
α(t)

(
X (t)− β(t)√

1− ᾱ(t)
sθ(X (t), t)

)
, β̃(t) =

1− ᾱ(t−1)

1− ᾱ(t) β(t), (10)

where sθ is the BRNN. For C, the forward process is:

q
(
C̃(1:T)|C̃(0)) = T∏

t=1

Pd∏
p=1

L∏
l=1

q
(
C̃(t)

p,l |C̃
(t−1)
p,l

)
, (11)

q
(
C̃(t)

p,l |C̃
(t−1)
p,l

)
:= C

(
C̃(t)

p,l ; (1− β(t))C̃(t−1)
p,l + β(t)/K

)
, (12)

where C is a categorical distribution, C̃(0)
p,l ∈ {0, 1}K is a one-hot encoding of Cp,l .
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Synthetic EHR Time Series Generation – Methodology
Mixed Diffusion (continued)
The forward process posterior distribution is defined as follows:

q
(
C̃(t−1)

p,l |C̃(t)
p,l , C̃

(0)
p,l
)
:= C

(
C̃(t−1)

p,l ;ϕ/
K∑

k=1
ϕk

)
, (13)

ϕ =
(
α(t)C̃(t)

p,l + (1− α(t))/K
)
⊙
(
ᾱ(t−1)C̃(0)

p,l + (1− ᾱ(t−1))/K
)
. (14)

The reverse process pθ(C̃
(t−1)
p,l |C̃(t)

p,l ) is parameterized as q
(
C̃(t−1)

p,l |C̃(t)
p,l , sθ(C̃

(t)
p,l , t)

)
.

sθ is trained using both Gaussian and multinomial diffusion processes:

LN (θ) := EX (0),ϵ,t

[∥∥∥ϵ− sθ

(√
ᾱ(t)X (0) +

√
1− ᾱ(t)ϵ, t

)∥∥∥2
]
, (15)

LC(θ) := Ep,l

[ T∑
t=2

DKL

(
q
(
C̃(t−1)

p,l |C̃(t)
p,l , C̃

(0)
p,l
) ∥∥∥ pθ

(
C̃(t−1)

p,l |C̃(t)
p,l
))]

. (16)

Muhang Tian (Duke University) Interpretability, Fairness, and Data Scarcity in Machine Learning April 2024 24 / 36



Synthetic EHR Time Series Generation – Results

Mixed Diffusion (continued)
The objective is to minθ λLC(θ) + LN (θ), where λ is a hyperparameter.

Evaluation Metrics: discriminative/predictive scores, train on synthetic test on real (TSTR),
nearest neighbor adversarial accuracy (NNAA), and membership inference risk (MIR).

TimeDiff EHR-M-GAN DSPD-GP GT-GAN TimeGAN RCGAN
Figure: t-SNE for eICU (1st row) and MIMIC-IV (2rd row). Synthetic samples in blue,
real training samples in red, and real testing samples in orange.
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Synthetic EHR Time Series Generation – Results
Metric Method Stocks Energy MIMIC-III MIMIC-IV HiRID eICU

TimeDiff .048±.028 .088±.018 .028±.023 .030±.022 .333±.056 .015±.007
EHR-M-GAN .483±.027 .497±.006 .499±.002 .499±.001 .496±.003 .488±.022
DSPD-GP .081±.034 .416±.016 .491±.002 .478±.020 .489±.004 .327±.020
DSPD-OU .098±.030 .290±.010 .456±.014 .444±.037 .481±.007 .367±.018
CSPD-GP .313±.061 .392±.007 .498±.001 .488±.010 .485±.007 .489±.010

Discriminative CSPD-OU .283±.039 .384±.012 .494±.002 .479±.005 .489±.004 .479±.017
Score GT-GAN .077±.031 .221±.068 .488±.026 .472±.014 .455±.015 .448±.043

(↓) TimeGAN .102±.021 .236±.012 .473±.019 .452±.027 .498±.002 .434±.061
RCGAN .196±.027 .336±.017 .498±.001 .490±.003 .499±.001 .490±.023
C-RNN-GAN .399±.028 .499±.001 .500±.000 .499±.000 .499±.001 .493±.010
T-Forcing .226±.035 .483±.004 .499±.001 .497±.002 .480±.010 .479±.011
P-Forcing .257±.026 .412±.006 .494±.006 .498±.002 .494±.004 .367±.047
Real Data .019±.016 .016±.006 .012±.006 .014±.011 .014±.015 .004±.003

TimeDiff .037±.000 .251±.000 .469±.003 .432±.002 .292±.018 .309±.019
EHR-M-GAN .120±.047 .254±.001 .861±.072 .880±.079 .624±.028 .913±.179
DSPD-GP .038±.000 .260±.001 .509±.014 .586±.026 .404±.013 .320±.018
DSPD-OU .039±.000 .252±.000 .497±.006 .474±.023 .397±.024 .317±.023
CSPD-GP .041±.000 .257±.001 1.083±.002 .496±.034 .341±.029 .624±.066

Predictive CSPD-OU .044±.000 .253±.000 .566±.006 .516±.051 .439±.010 .382±.026
Score GT-GAN .040±.000 .312±.002 .584±.010 .517±.016 .386±.033 .487±.033

(↓) TimeGAN .038±.001 .273±.004 .727±.010 .548±.022 .729±.039 .367±.025
RCGAN .040±.001 .292±.005 .837±.040 .700±.014 .675±.074 .890±.017
C-RNN-GAN .038±.000 .483±.005 .933±.046 .811±.048 .727±.082 .769±.045
T-Forcing .038±.001 .315±.005 .840±.013 .641±.017 .364 ±.018 .547±.069
P-Forcing .043±.001 .303±.006 .683±.031 .557±.030 .445±.018 .345±.021
Real Data .036±.001 .250±.003 .467±.005 .433±.001 .267±.012 .304±.017
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Synthetic EHR Time Series Generation – Results

Table: Privacy score evaluations.

Metric Method MIMIC-III MIMIC-IV HiRID eICU

AAtest (∼0.5) TimeDiff .574±.002 .517±.002 .531±.003 .537±.001
EHR-M-GAN .998±.000 1.000±.000 1.000±.000 .977±.000
RCGAN .983±.001 .999±.000 1.000±.000 1.000±.000

AAtrain (∼0.5) TimeDiff .573±.002 .515±.002 .531±.002 .531±.002
EHR-M-GAN .999±.000 1.000±.000 1.000±.000 .965±.002
RCGAN .984±.001 .999±.000 1.000±.000 1.000±.000

NNAA (↓) TimeDiff .002±.002 .002±.002 .004±.003 .006±.002
EHR-M-GAN .000±.000 .000±.000 .000±.000 .012±.003
RCGAN .001±.000 .000±.000 .000±.000 .000±.000

MIR (↓) TimeDiff .191±.008 .232±.048 .236±.179 .227±.021
EHR-M-GAN .025±.007 .435±.031 .459±.161 .049±.006
RCGAN .013±.002 .277±.049 .063±.013 .000±.000
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Synthetic EHR Time Series Generation – Results
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Figure: (Top) TSTR/TRTR; (Bottom) TSRTR.
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Future Work

Fair RL
Proposed algorithm, Welfare Q-learning, does not have strong convergence guarantees.
Adapting to deep learning techniques for complex state space and environments
(non-grid-world).

Interpretable ML
Interpretability for knowledge discovery and verification, i.e., helping doctors to understand
whether a diagnosis methodology is useful or not.
Applications in supporting healthcare in real-world settings.

Synthetic EHR
Adaptive diffusion model for class-aware generation, so that the trained model can be used to
generate synthetic samples for different population.
Privacy protection guarantees and interpretability of diffusion models.
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