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Abstract

Digitization and the internet have made data extensively available in the current cen-

tury. Machine learning, a computational and statistical technique capable of drawing

insights from data, has demonstrated its capability to provide support for human-

relevant tasks in pattern recognition, generative modeling, and agent control. Progress

in machine learning has brought tremendous improvement in performance across vari-

ous tasks aforementioned. Nevertheless, despite these advancements, challenges persist

in implementing additional constraints on machine learning techniques in order to more

appropriately support humankind. When applied to human-relevant tasks, it is vital

for machine learning techniques to take into consideration their effect on social inequal-

ity and trustworthiness. Additionally, although data availability has increased, certain

fields like healthcare contain barriers to data access that could thwart the development

of machine learning. Motivated by these challenges, my research has concentrated on

developing methods that address interpretability, fairness, and data scarcity within

machine learning, aiming to refine their application and efficacy in human-relevant

domains.
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Chapter 1

Introduction

Due to digitization and the internet, data has become widely available in the current

century. Machine learning, due to its ability to recognize patterns in data, has be-

come a popular field of study due to its capability to make predictions, model data

distributions, and control agents.

Nevertheless, despite the advances in machine learning, it remains a challenge to allow

machine learning techniques to consider additional constraints in order to better sup-

port human-relevant tasks. For instance, while machine learning models could score

outstanding predictive performance metrics, they could possibly harm society due to

their inherent unfairness and inequity beliefs drawn from the training data, strength-

ening the inequality already present in the current society. Furthermore, while current

complex machine learning models could provide outstanding performance measured by

evaluation metrics, they are often unfathomable for humans to comprehend the rea-

sons behind their predictions. Their “black-box” nature implicitly could inhibit their

usage in high-stake settings, such as those in healthcare and medicine, where the cost

of fully trusting an opaque model that could make false predictions is too high to bear.

Moreover, while data availability has increased in today’s age, data access is strictly
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controlled in some domains, such as medicine and healthcare, due to privacy concerns.

In these settings, it is difficult to develop machine learning models or conduct research

due to a lack of data.

Therefore, to empower machine learning techniques, it remains a crucial task to con-

sider interpretability, fairness, and tackling data scarcity challenges. Ideally, we would

want our techniques to create equality between its users, provide a means of trans-

parency that informs people about the reason for predictions, and have a level of

tolerance for data scarcity. Motivated by these aspirations, my past research during

my undergraduate studies has focused on designing techniques that address each of

these factors in machine learning and exploring their potential solutions.

In this paper, I will discuss techniques for incorporating fairness considerations within

the context of reinforcement learning, interpretability concepts within risk prediction

for critical care patients, and synthetic data generation techniques to tackle data

scarcity issues in electronic health records.
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Chapter 2

Fairness in Reinforcement Learning

2.1 Introduction

Reinforcement learning (RL) is a sub-field of machine learning that focuses on training

an effective policy of an agent. To understand why fairness could be important in RL,

let us see the following hypothetical example:

Assuming a delivery company would like to deploy an RL agent to optimize for com-

pleting deliveries, and the agent successfully optimizes this objective and contributes

to increased revenues of the company. After some time, the company heard complaints

that services to some delivery locations had become worse than before the agent de-

ployment. To seek a solution, the company’s engineers fine-tuned the reward weights

associated with deliveries to those locations but only found that other locations are

now being neglected.

This is a case where data-driven algorithms may be generally performant but fail on

structured subsets of input. The engineers did take a correct approach well-known in

RL — “reward shaping” on individual objectives to achieve the desired behavior of

achieving high delivery rates across all customer locations. However, standard RL,
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where the reward signal is a scalar value, and the goal is to maximize cumulative

discounted return, might naturally learn a policy that prioritizes “easy” to optimize

regions (such as clusters of many tightly packed locations with many deliveries) at

the expense of more difficult ways to achieve reward. Furthermore, because standard

techniques rely on learning a stationary policy, the agent would continue to prioritize

the same customers day after day. Solving this problem could involve problem-specific

fine-tuning of rewards.

Compared with previous works, I take a different approach by studying nonlinear wel-

fare optimization in the context of Multi-objective Reinforcement Learning (MORL).

A Multi-Objective Markov Decision Process (MOMDP) is a Markov Decision Process

where rewards are vectors instead of scalars. The elements in this vector can be dif-

ferent criteria we would like to consider, like cost and time, or as individual utilities

of “users” to whom the learning agent should be fair. In the example above, the cus-

tomers are the users, and the vector reward tracks how well the learning agent performs

for each user in terms of delivery rates.

Solving a MOMDP involves maximizing some function of the cumulative reward vector.

Due to the linearity of expectation, linear functions such as weighted arithmetic mean

are the most straightforward to use. However, this approach has its limitations since

any particular weight may result in policies undesirable from a fairness perspective

since any linear function may ignore the utility of some users. For instance, for equal

weights, a policy that gives user 1 a utility of 10 and user 2 a utility of 0 is preferred over

another policy that yields a utility of 4 for both. Thus, I aim to study a more general

class of welfare functions with a particular emphasis on nonlinear welfare functions

that optimize for fairness and efficiency.

Optimizing a nonlinear welfare function in a MOMDP is a challenging task. Firstly,
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the Bellman optimality principles [1][2] no longer hold, and stationary policies (where

actions depend on the current state and not on past history) are no longer necessarily

optimal. Nevertheless, this result is quite intuitive for fairness, as the notion of equality

depends on the amount of resources already allocated to the users.

A fair MORL agent could be useful in real-world settings as well. In telecommunica-

tions, one may wish to allocate bandwidth that balances the quality of service across

various locations. Moreover, in autonomous driving, one may want to balance vehicle

speed and passenger comfort [3].

In this chapter, I would like to present my work, namelyWelfare Q-learning, that uses a

non-stationary action selection policy along with non-linear updates to approximate the

welfare maximization objective effectively. I also present some additional discussions

on the specific reason for optimizing for expected welfare rather than the welfare of

expectation.

2.2 Related Work

Multi-objective reinforcement learning (MORL) algorithms include single-policy and

multi-policy methods [4]. Single-policy methods use a scalarization function to reduce

the problem to scalar optimization for a single policy. The simplest form is linear

scalarization, applying a weighted sum on the Q vector [5].

Multi-policy methods search for a set of policies that approximate the Pareto frontier

of the problem. For instance, the convex hull value-iteration algorithm [6] computes

the deterministic stationary policies on the convex hull of the Pareto front. Pareto Q-

learning [5] integrates temporal difference algorithms with Pareto dominance relations

to learn a set of Pareto dominating policies. Stochastic mixture policy [7] combines
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multiple deterministic base policies with a convex combination, choosing a base policy

with a given probability at the start of each episode. Given that the size of the Pareto

frontier may grow exponentially with the dimensionality of the problem, I mainly focus

on single-policy methods with nonlinear scalarizing functions (in this case, the welfare

functions).

Fairness in Reinforcement Learning has been recently considered, beginning with [8]

in a scalar setting. More directly related to our work, [9] investigated the (Deep)

MORL problem of learning a fair policy to optimize the Generalized Gini Social Welfare

function using nonlinear scalarization. [10] studied a similar problem and considered

maximizing concave welfare functions generally and Nash welfare specifically, showing

an optimal approach to optimizing the welfare of expected rewards in the tabular

setting and an extension to the function approximation setting.

My work differs from these in two major ways: (1) I seek to optimize the expected

welfare, rather than the welfare of expected rewards, which is fundamentally more chal-

lenging computationally, and the welfare of expected rewards could also tolerate unfair

outcomes within individual trajectories. (2) The agent learns a non-stationary policy,

as stationary policies may be far from optimal for optimizing expected (nonlinear)

welfare.

I formulate the welfare functions based on the resource allocation literature [11]. One

canonical example of a fair welfare function is the Nash Social Welfare (NSW) function.

It derives from Nash’s solution to the bargaining game [12] and its n-player extension

[13]. Its log transform is known as the proportional fairness objective. More recent

studies have shown NSW maximization provides outstanding fairness guarantees when

allocating both divisible and indivisible goods [14].
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2.3 Preliminaries

A Multi-objective Markov Decision Process (MOMDP) consists of a finite set S of

states, a starting state s1 ∈ S, a finite set A of actions (let A(s) denote the subset

of actions available in state s), and probabilities Pa,s,s′ ∈ [0, 1] that determine the

probability of transitioning to state s′ from state s after taking action a. Probabilities

are normalized so that
∑

a∈A(s),s′ Pa,s,s′ = 1 for all s. We also have a reward function

R(s, a) : S × A → Rn for taking action a in state s.1 Some states may be terminal,

meaning they transition only to themselves and yield 0 reward.

Each of the n dimensions of the reward vector correspond to one of the multiple objec-

tives that are to be maximized. At each time step t, the agent observes state st ∈ S,

takes action at ∈ A(st), and receives a reward vector rt = R(st, at) ∈ Rn. The en-

vironment, in turn, transitions into st+1 with probability Pat,st,st+1 . Where clear from

context, we will often omit the subscript and simply write the immediate reward vector

as r.

A trajectory is a sequence of state, action, reward tuples τ = (s1, a1, r1), ..., (sT , aT , rT ).

A trajectory that begins in the starting state s1 and ends in a terminal state defines

an episode. For a discounting factor γ ∈ [0, 1), the discounted cumulative return of a

trajectory is the vector

G(τ) =
∞∑
t=1

γt−1rt.

A stationary policy is function π(a | s) : S × A → [0, 1] that forms a probability

distribution such that
∑

a∈A(s) π(a | s) = 1 for all s. Such a policy is stationary since

the probability with which an action is selected depends only on the current state.

More generally, a policy (not necessarily stationary) is a function π(a | τ, s) that may

1For simplicity of exposition, we assume rewards are deterministic.
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additionally depend on a given trajectory (intuitively, the history prior to reaching

state s).

An action value function is defined as the expected total reward starting from s, taking

action a, and following policy π thereafter:

qπ(s, a) := Eτ∼π

[
∞∑
k=0

γkrt+k

∣∣∣ st = s, at = a

]
.

Most value-based approaches aim to solve the learning problem by finding an estimate

of qπ(s, a). Such an estimate is denoted as Qπ(s, a).

2.4 Methodology

2.4.1 Expected Welfare Maximization

In contrast to some prior work mentioned in Section 2.2 [9, 10], I aim to optimize the

expected welfare objective Eτ∼π

[
W
(
G(τ)

)]
rather than the welfare of the expectation

W
(
Eτ∼π[G(τ)]

)
. Using Jensen’s inequality, the following can be obtained [15]:

Eτ∼π

[
W
(
G(τ)

)]
≤ W

(
Eτ∼π[G(τ)]

)
. (2.1)

Thus, I aim to optimize for the lower bound (which is also a more computationally

challenging objective) in order to avoid treating policies as “fair” that are unfair in every

particular trajectory and satisfy fairness only across trajectories on average. This idea

can be illustrated with the following toy example:

Consider MOMDP in Figure 2.1 with n = 2 users. Assume we aim to learn a policy

that maximizes NSW. There is a stochastic policy π1 that yields discounted cumulative
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reward of (1, 0) with probability 0.5 and (0, 1) with probability 0.5. There is another

deterministic policy π2 that yields (0.5− ϵ, 0.5− ϵ) (where ϵ > 0 is small). The NSW

of expected reward under π1 is 0.5, even though with probability 1, the NSW of every

trajectory generated by π1 is 0. In contrast, the NSW of π2 is always 0.5−ϵ. Therefore,

by choosing to maximize the expected welfare, our agent would prefer π2.

s1 s2
(0.5− ϵ, 0.5− ϵ)

(0, 1)

(1, 0)

Figure 2.1: Example MOMDP. Dotted lines represent trajectories generated by π1,
solid line for π2

This example shows the intuition for the algorithm is designed to maximize Eτ∼π

[
W
(
G(τ)

)]
.

The goal is to find a policy that generates trajectories with high expected welfare, a

stronger property than generating high welfare of expected rewards. However, this

objective is also more computationally challenging. In fact, it is APX-hard to optimize

a policy for NSW of cumulative returns, even under a deterministic environment [16].

This result is obtained via a reduction from the problem of allocating indivisible goods.

2.4.2 Algorithm

I now present the algorithm show in Algorithm 1, Welfare Q-Learning, which imple-

ments a variant on Q-learning [17], a model-free temporal-difference learning algorithm

[18]. The high-level intuition for temporal-difference learning is to update the Q-values

on the next timestamp estimate in order to converge to that value and gradually close

the temporal difference. The algorithm differs in two major ways from standard Q-

learning.

1. Q table updates are chosen to maximize the (potentially) nonlinear welfare func-

9



tion W , and each value Q(s, a) is a vector in Rn corresponding to an estimate of

the future reward vector possible that maximizes welfare.

2. Behavior policy for action selection is non-stationary. We keep track of the dis-

counted cumulative return vector racc within a trajectory until the current time

stamp and select the action that maximizes total estimated welfare, including

that already accumulated and future estimates.

Algorithm 1 Welfare Q-Learning

1: Parameters: Learning rate α ∈ (0, 1], Discount factor γ ∈ [0, 1), exploration rate
ϵ > 0, welfare function W

2: Require: Initialize Q(s, a) for all s ∈ S, a ∈ A(s) arbitrarily except Q(s̄, ·) ← 0
for terminal states s̄

3: for each episode do
4: Initialize s← s1, racc ← 0, c← 0
5: repeat ▷ each step in an episode
6:

a←

{
a uniform random action withPr(ϵ)

argmaxa′ W (racc + γcQ(s, a′)) otherwise

7: Take action a, observe r, s′

8: a∗ ← argmaxa W [γQ(s′, a)]
9: Q(s, a)← Q(s, a) + α[r + γQ(s′, a∗)−Q(s, a)]
10: s← s′

11: racc ← racc + γcr
12: c← c+ 1
13: until s is terminal
14: end for

2.5 Results

To benchmark Welfare Q-Learning, I designed a simulation environment shown in

Figure 2.22. In this grid world, the agent is a taxi driver whose goal is to deliver

passengers from their origins to their destinations. There are n origin-destination pairs,

2The implementation is available at https://github.com/MuhangTian/Fair-MORL-AAMAS
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one for each dimension of reward, and the agent earns reward in that dimension when

dropping off a passenger from that origin-destination pair. There are an unlimited

number of passengers for each origin-destination pair, but the taxi can only take one

passenger at a time. This constraint enforces objectives to be conflicting, thus the

agent’s fairness performance becomes more important—it should provide its delivery

service to each origin successfully and fairly over time, without ignoring origins that

are more difficult to deliver (such as number 3 origin/destination pair in Figure 2.2).

The results demonstrate that (a) Welfare Q-Learning is effective in finding policies

with high expected welfare compared with other baselines, (b) the rate of convergence

depends on n, the dimensionality of the reward space, and (c) linear scalarization and

mixture policies are generally inadequate for optimizing fair welfare functions. All

results for all algorithms are obtained using an average of NSW and utilitarian welfare

of racc for each episode over 50 runs. For all the experiments, each unit on the x-axis

corresponds to an episode, which equals to 10000 timesteps or action selections in the

environment. The duration of a timestep is the same across all methods.

Figure 2.2: Taxi Simulation Environment

11



(a) Online Performance (NSW) (b) Online Performance (Utilitarian)

(c) Taxi with Different Dimensions (NSW)
(d) Taxi with Different Dimensions (Utilitar-
ian)

Figure 2.3: Experiment Results for Taxi Environment. Non-stationary Policy is Wel-
fare Q-Learning

2.5.1 Metrics, Methods, and Baseline Algorithms

All of the experiments attempt to optimize NSW (results for other welfare functions

are provided in the Appendix). I measure the NSW function on racc earned thus

far. NSW satisfies all necessary desiderata for fairness plus scale invariance, and is an

intermediate welfare function between the extremes of egalitarian and utilitarian social

welfare [16]. For comparison, I also show utilitarian social welfare (the arithmetic mean

of reward vectors) alongside NSW.
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Since the geometric mean can be numerically unstable, I implement the log transform

of NSW as the objective in practice. That is, instead of maximizing NSW(R) =

(
∏n

i Ri)
1/n

, I equivalently maximize
∑n

i ln(Ri + λ), where λ > 0 is included as a

smoothing factor in case Ri = 0. Due to the nature of the NSW function, the NSW

of rewards with negative elements is undefined or alternatively can be defined as −∞.

Thus, the scope of this section is restricted to policies that yield all non-negative

accumulated returns.

2.5.1.1 Baseline Algorithms

Welfare Q-Learning is compared against three baselines.

1. Optimal Linear Scalarization. A simple MORL technique is to apply linear scalariza-

tion on the Q-table [19]. Given weights w ∈ Rn, where
∑n

i=1 wi = 1 for n objectives,

let SQ(s, a) =
∑n

i=1 wiQ(s, a)i, where Q(s, a)i is the Q-value for ith objective. For

each time step, SQ(s, a) is treated by the algorithm as the objective to perform both

action selection with ϵ-greedy and learning updates of Q(s, a). The weights w are

chosen using that performed best on the NSW objective as determined by a grid

search through combinations of w. This baseline is included to demonstrate the

limitations of linear scalarization on nonlinear objectives and show the importance

of our nonlinear learning updates in Algorithm 1.

2. Stationary Policy. Algorithm 1, Welfare Q-Learning, learns a particular Q-table

corresponding to a (potentially) nonlinear welfare function, then performs non-

stationary action selection. By contrast, I also show the results if one applies a

stationary ϵ-greedy action selection on the same learned Q-table. That is, the sta-

tionary policy algorithm does not consider racc in its action selection. This baseline

is included to demonstrate the importance of non-stationary action selection.
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3. Optimal Mixture Policy. [7] proposed the idea of combining multiple Pareto Optimal

base policies into a single mixture policy. I chose our base policies as those that

optimize each dimension of the reward vector independently. The algorithm then

uses one of these policies for I time steps, then switches to the next. To determine

the optimal value of I for optimizing NSW, grid search is used. I use the resulting

optimal value I∗. This baseline examines the effectiveness of intuitive approaches

(combining optimal policies for each user) for optimizing fairness.

2.5.2 Results and Discussions

Results are shown in Figure 2.3. Welfare Q-Learning achieves the maximum average

NSW score among all the algorithms and still manages to achieve the second-highest

utilitarian score. Non-stationary policy outperforms the stationary policy on the same

Q-table for both NSW and utilitarian score. No Note that a stationary policy that

optimizes NSW on this environment must essentially make a large loop, always taking

each origin-destination pair in turn, whereas a non-stationary policy can selectively op-

timize a single origin-destination pair for several time steps before switching to another

pair.

Linear scalarization has the lowest average NSW since there simply does not exist a

set of weights that would produce accumulated returns in all dimensions. It achieves

highest utilitarian score since it favors to complete delivery for closest origin/destina-

tion pairs (such as index 2 pair in Figure 2.2). The mixture policy performs generally

well but slightly lower than that of Welfare Q-Learning, this is because an optimal fair

policy in this environment does have the structure of alternating between optimizing

on different dimensions at a time. Although the mixture policy converges quickly (each

dimension independently is very easy to optimize), such performance is also subject to
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finding the optimal interval for the taxi environment I∗ (227 timesteps) via a search

through the parameter space, which involves a computational cost not reflected by the

figures.

For Welfare Q-Learning, there is an inverse correlation between the dimensionality of

the reward space n and the rate of convergence, as shown in Figure 2.3d. A possible

explanation is that the increase in dimensionality increases the size of the Q-table,

which is of size |S| × |A| × n, thus more updates are needed to converge.

2.6 Appendix

2.6.1 Taxi Environment Descriptions

Figure 2.4: Visualization of Taxi grid world, orange circle is the taxi, origins are blue
squares, destinations are red squares, with numbers indicating the corresponding origin
and destination pairs

1. State space: contains information about location of taxi on the grid, whether

there is passenger in taxi, destination of the passenger in taxi

2. Action space: move north, south, east, west, pick passenger, drop passenger

3. Reward function:
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Rt =


0 if at ∈ {north, south, east, west } or at is a valid pick or drop

−10 if invalid pick or drop is performed

Ri = 30, Rj = 0,∀j ̸= i if passenger from origin i in taxi is delivered correctly

2.6.2 Experimental Results for Other Welfare Functions

Experiments are also performed for Welfare Q-Learning based on P -welfare and egali-

tarian welfare functions (Figure 2.5). We chose a range of values of P between [−1, 1]

and recorded each of its performances with NSW and utilitarian score.

Figure 2.5: Experimental Results for Other Welfare Functions
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Chapter 3

Interpretable Machine Learning for

Critical Care

3.1 Introduction and Related Work

In-hospital mortality risk prediction is an essential task in medical decision-making

[20, 21, 20, 22], supporting medical practitioners to better estimate patients’ states

and allocate resources appropriately for treatment and triaging [23, 24, 25].

Mortality is often estimated with severity of illness risk scores, where, first, each fea-

ture is transformed into an integer-valued component function based on its degree of

deviation from normal values, and then a nonlinear function transforms the sum of

component functions into an estimate of risk. Risk scores are designed to be easy to

comprehend, troubleshoot, and use in practice. A method for constructing more ac-

curate (but still interpretable) severity of illness risk scores could save lives and assist

with better allocation of resources.

The severity of illness risk scores have been constructed in various ways since the early

1980’s, starting with the APACHE [26], SOFA [27, 28], APACHE II [29], and SAPS
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[30] scores, as well as the more recent APACHE IV [31] score. All of these scores were

built using a combination of basic statistical techniques and domain expertise. Statis-

tical hypothesis testing was generally used for variable selection, and techniques like

logistic regression and locally weighted least squares [32] were often used for combining

variables. This process left many manual choices for analysts: at what significance

level should we stop including variables? Of the many features selected by hypothesis

testing, how should we choose which ones would be included? How should the cutoffs

for risk increases for each variable be determined? How do the risk scores from logistic

regression become integer point values that doctors can easily sum, troubleshoot, and

understand? While a variety of heuristics have been used to answer these questions,

ideally, the answers would be determined automatically by an algorithm that optimizes

predictive performance. Since humans, even equipped with heuristics, are not natu-

rally adept at high-dimensional constrained optimization, it is particularly important

that these models are sparse in the number of features so they are easy to calculate in

practice.

Recently, more modern statistical and machine learning (ML) approaches have been

used to create interpretable models for predicting mortality without the need for man-

ual intervention. Specifically, the OASIS score [33] was built using a genetic algorithm

[34] to select predictive variables, particle swarm optimization [35] to determine in-

teger scores for variables’ deciles, and logistic regression to transform integer scores

into probabilities. However, genetic algorithm and particle swarm optimization ap-

proaches can be insufficient, leading to the possibility of improved performance using

other techniques.

State-of-the-art “black box” ML approaches have been applied to the mortality risk

prediction, aiming to improve predictive performance [36, 37, 38, 39, 40, 41]. For
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instance, OASIS+ researchers [37] used a variety of black box ML algorithms (such

as random forest [42] and XGBoost [43]) on OASIS features to develop ML models

that mostly outperform other severity of illness scores such as OASIS and SAPS II.

The black box models combine variables in highly nonlinear ways and are difficult to

troubleshoot and understand in practice, which is why, to the best of my knowledge,

OASIS+ models have not been adopted for mortality risk prediction in ICUs.

In this chapter, I introduce GroupFasterRisk— an interpretable machine learning

algorithm capable of producing a set of diverse, high-quality risk scores — to generate

severity of illness scores. GroupFasterRisk automates the entire process of feature

selection, cutoffs for risk increases, and integer weight assignments. This approach op-

timizes more carefully than the approach of OASIS and another risk-score generation

method called AutoScore [44], is much more scalable than its predecessor RiskSLIM [45,

46], and is more customizable than its predecessor FasterRisk [47]. GroupFaster-

Risk optimization process yields higher-quality interpretable models than competitors;

in fact, I also show in the results section that its models are as performant as black

box ones.

3.2 Methodology

3.2.1 Experimental Setup

3.2.1.1 Datasets

I consider the Medical Information Mart for Intensive Care III (MIMIC III) [48] and the

eICU Collaborative Research Database (eICU) [49] datasets. Training of the models

is performed on MIMIC III. I selected a subset of 49 features (including physiological

measurements, lab measurements, and patient comorbidities) from the union of features
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in existing severity of illness scores based on a ranking by AUROC. A transformation of

continuous and categorical features into binary ones is applied, and indicator variables

are used to provide information on whether the missing values are known. To test for

generalization, the eICU dataset is used for out-of-distribution (OOD) testing.

3.2.1.2 Predictive Metrics

In this chapter, the area under the receiver-operating characteristic curve (AUROC)

and the area under the precision-recall curve (AUPRC) are adopted as the metrics for

predictive accuracy. Since the datasets are highly imbalanced, AUROC alone may not

accurately capture the performance of models on the minority class (expired patients)

[50]; AUPRC is used as an additional evaluation metric to provide a more complete

view of the predictive accuracy.

3.2.1.3 Sparsity Metrics

A model’s sparsity is informally defined as a way of measuring the model’s size. For

linear models such as logistic regression, explainable boosting machine (EBM) [51],

AutoScore [44], and GroupFasterRisk, sparsity is the total number of coefficients,

intercepts, and multipliers. For tree-based models like XGBoost [52], AdaBoost [53],

and Random Forest [42], sparsity is the number of splits in all trees.

3.2.1.4 Calibration Metrics

High AUROC and AUPRC do not ensure that the model precisely estimates the risk

probability. This is because they are rank statistics [54]. To evaluate the reliability of

the predictions, I use the Brier score, Hosmer-Lemeshow χ2 statistics (HL χ2), and the

standardized mortality ratio (SMR) [55, 56]. C-statistics is used for HL χ2, calculated

from deciles of predicted probabilities. Paired t-test is used for statistical testing.
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3.2.2 Algorithm

Consider a dataset D = {1, x̃i, yi}ni=1, where yi ∈ {0, 1} is a label, x̃i ∈ Rp is a binarized

feature vector, xi ∈ Rq is the raw feature vector, and 1 is added for ease of notation and

represents an intercept. The set of feature indices {1, ..., p} is arbitrarily partitioned

into Γ disjoint sets (groups), denoted as {Gk}Γk=1. Let D/m = {1/m, x̃i/m, yi}ni=1 be a

scaled dataset, scaled by a multiplier m, m > 0 (m will be learned by the algorithm).

Consider hypothesis space of linear models w⊤x̃ + w0, where w ∈ Rp and w0 ∈ R. I

denote wGk
∈ Z|Gk| as entries in w that belong to a group Gk.

The problem of creating risk scores is formulated as an optimization problem in Equa-

tion (3.1). The goal is to obtain integer-valued solutions of a sparse (ℓ0 regularized)

logistic regression under sparsity, group sparsity, and box constraint. A solution is

denoted as (w, w0). The sparsity constraint λ (Equation (3.1b)) is the number of

non-zero elements in the solution vector w and directly controls the model complexity.

Group sparsity constraint γ (Equation (3.1e), where I{·} denotes the indicator func-

tion) allows users to control the number of partitions on the features. Box constraint

(a, b), where a, b ∈ Rp, (Equation (3.1c)) allows users to limit the solution values to

their desired range, i.e., wj ∈ [aj, bj].

Overall, the problem of computing an integer-valued linear model is NP-hard [47].

However, we can solve it by finding a good approximate solution and using m as a mul-

tiplier to do so. While (w, w0) must be integer-valued, the product
(
w⊤x̃/m+ w0/m

)
can be real-valued. Therefore, I optimize logistic loss in for real-valued solution(
w⊤x̃/m+ w0/m

)
(Equation (3.1a)).

min
w,w0,m

L(w, w0,D/m) =
n∑

i=1

log

(
1 + exp

(
−yi

w⊤x̃i + w0

m

))
(3.1a)
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s.t. ∥w∥0 ≤ λ,w ∈ Zp, w0 ∈ Z # at most λ integer coefficients (3.1b)

wj ∈ [aj, bj] ∀j ∈ {1, ..., p} # control range of coefficients (3.1c)

m > 0 # expand solution space using multiplier (3.1d)

Γ∑
k=1

I {wGk
̸= 0} ≤ γ. # at most γ groups, where Gk are the indices of group k

(3.1e)

The optimization problem in Equation (3.1) is solved similarly to [47] in three steps:

1. Relax the integer value constraints and find a real-valued solution (w(∗), w
(∗)
0 ) to

sparse logistic regression under box constraint (a, b).

2. Based on (w(∗), w
(∗)
0 ), swap one feature at a time to obtain a set of M sparse

diverse real-valued solutions. Use an iterative subroutine to select the features,

each of which must strictly satisfy the group constraint γ. Call this set Diverse

Pool and denote the set by {(w(t), w
(t)
0 )}Mt=1. Diverse Pool’s solutions are nearly

as accurate as our original solution (w(∗), w
(∗)
0 ).

3. For every solution in the Diverse Pool {(w(t), w
(t)
0 )}Mt=1, round all the continuous

solutions to integers, thus assigning weights to the selected variables and pro-

ducing a set of risk scores. Unlike direct rounding that could worsen solution

quality, the algorithm use a subroutine that adapts multiplier m to extend the

solution space when rounding the coefficients. A theoretical upper bound on the

rounding error is proven in [47]; this choice permits us to maintain a high level

of accuracy while rounding.

Together, the three steps allow GroupFasterRisk to produce multiple diverse sparse

risk scores with high accuracy. Finally, for a given solution (w, w0), risk predictions are
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P (Y = 1 | x̃) = σ
((
w⊤x̃+ w0

)
/m
)
, where σ(ξ) = 1/

(
1 + e−ξ

)
is a sigmoid function.

The Sequential Rounding algorithm [45] is used to find an integer risk score.

GroupFasterRisk provides the option of a monotonic correction so that the risk

score is forced to increase (or decrease) along a variable. This allows users to better

align the modeling process with domain knowledge.

For conciseness, I denote GroupFasterRisk models with the prefix GFR and group

sparsity as the suffix. For instance, a GroupFasterRisk model trained with a group

sparsity of 10 is GFR-10.

3.3 Results

3.3.1 All-cause Mortality Prediction

I first focus on evaluating how GroupFasterRisk performs when predicting all-cause

in-hospital mortality, an important task in risk prognosis in critical care setting.

3.3.1.1 In-distribution Performance and Sparsity

GroupFasterRisk models predicted in-hospital mortality with the best AUROC and

AUPRC across all internal evaluations on MIMIC III test folds (Figure 3.1b). Specifi-

cally, GFR-10 achieves an AUROC of 0.813 (±0.007) and AUPRC of 0.368 (±0.011),

around 0.05 higher than OASIS. When using fifteen features, GFR-15 achieves an AU-

ROC of 0.836 (±0.006) and AUPRC of 0.403 (±0.011), both around 0.05 higher than

SAPS II (all the reported results are statistically significant with p < 0.001). Group-

FasterRiskmodels are less complex than the competing scoring systems (Figure 3.1b)

on MIMIC III. When using 10 features, GFR-10 has a model complexity of 42 (±0),

whereas OASIS has 47. For fifteen features, GFR-15 is 48 (±4.9) while SAPS II is 58.
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(a) ROC (left) and PR (right) curves for predicting all-cause in-hospital mortality
on OOD evaluation. GroupFasterRisk models achieve better performance
than all scoring system baselines except for APACHE IV/IVa on AUROC.

(b) GroupFasterRisk compared with the well-known severity of illness scores under differ-
ent group sparsity constraints (equivalent to number of features). Evaluated on the internal
MIMIC III dataset using 5-fold nested cross-validation, the best model from GroupFaster-
Risk is then evaluated in an OOD setting on the eICU cohort.
a. F is the number of features (equivalent to group sparsity) used by the model.
b. APACHE IV/IVa cannot be calculated on MIMIC III due to a lack of information for
admission diagnoses.

Sparse Not Sparse

GFR-10 OASIS GFR-15 SAPS II GFR-40 APACHE IV APACHE IVa
F = 10 F = 10 F = 15 F = 17 F = 40 F = 142 F = 142

MIMIC III AUROC 0.813 ± 0.007 0.775 ± 0.008 0.836 ± 0.006 0.795 ± 0.009 0.858 ± 0.008
Test Folds AUPRC 0.368 ± 0.011 0.314 ± 0.014 0.403 ± 0.011 0.342 ± 0.012 0.443 ± 0.013

HL χ2 16.28 ± 2.51 146.16 ± 10.27 26.73 ± 6.38 691.45 ± 18.64 35.78 ± 11.01
SMR 0.992 ± 0.022 0.686 ± 0.008 0.996 ± 0.015 0.485 ± 0.005 1.002 ± 0.017
Sparsity 42 ± 0 47 48 ± 4.9 58 66 ± 8.0

eICU AUROC 0.844 0.805 0.859 0.844 0.864 0.871 0.873
Test Set AUPRC 0.437 0.361 0.476 0.433 0.495 0.487 0.489

Sparsity 34 47 50 58 80 ≥142 ≥142

Figure 3.1: Comparison of GroupFasterRisk models with OASIS, SAPS II,
APACHE IV, and APACHE IVa on all-cause in-hospital mortality prediction task.

3.3.1.2 Out-of-distribution Performance and Sparsity

Further evaluation of GroupFasterRisk models is performed on the OOD eICU

dataset (Figure 3.1b). I find that GFR-10 outperforms OASIS for both AUROC and

AUPRC, with a noticeable margin of +0.039 and +0.075 for AUROC and AUPRC,

respectively. Furthermore, GFR-15 achieves better predictive accuracy than SAPS II,

with a margin of +0.015 for AUROC and +0.043 for AUPRC. The ROC and PR curves

for the eICU dataset are shown in Figure 3.1a.
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Although GroupFasterRisk is designed to optimize for sparse models, I included

a more complex version, GFR-40, in our OOD evaluation for a thorough comparison

with APACHE IV/IVa. GFR-40 outperforms APACHE IV/IVa in terms of AUPRC

with a margin of +0.008 for IV and +0.006 for IVa. Although APACHE IV/IVa has

higher AUROC scores (+0.007 for IV and +0.009 for IVa), GFR-40 uses significantly

fewer features (40 compared to 142 for APACHE IV/IVa). In fact, APACHE cannot be

calculated on the MIMIC III dataset, which highlights the disadvantage of complicated

models in general.
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(a) Performance of GroupFasterRisk under different levels of group sparsity. (Left) Internal
evaluation on MIMIC III. (Right) OOD evaluation on eICU.
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(b) Time consumption to trainGroupFasterRisk under various sparsity and group sparsity
constraints. Evaluated on Apple MacBook Pro, M2, using five repeated trials on the entire
MIMIC III dataset, with sample size of 30,238 and 49 features.

Figure 3.2: Group sparsities and time consumption of GroupFasterRisk.
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3.3.1.3 Group Sparsity and Runtime

Figure 3.2a shows the predictiveness of GroupFasterRisk models under different

levels of group sparsity. I find that a higher group sparsity (equivalent to using more

features) is positively correlated with an increase in AUROC. A similar observation

is found for AUPRC. However, the increase in AUROC becomes relatively small after

30 variables. Note that under different group sparsity levels, GroupFasterRisk’s

models outperform OASIS and SAPS-II. Shown in Figure 3.2b, it takes at most two

hours to train GroupFasterRisk on our MIMIC III cohort (recall that MIMIC III

cohort has 30,238 patients). This is a relatively short amount of time considering that

GroupFasterRisk is solving an NP-hard combinatorial optimization problem.

3.3.1.4 Fairness and Calibration

GroupFasterRisk produce reliable and fair risk predictions when we evaluated

GroupFasterRisk models across various demographic subgroups, including ethnic-

ity and gender (Table 3.1). GroupFasterRisk models are not particularly biased

towards the majority race of Caucasians and are well-calibrated on specific subgroups

in our eICU cohort. The models consistently achieve low Brier scores and HL χ2 across

subgroups. Except in a few cases, GroupFasterRisk models’ Brier scores, HL χ2,

and SMR are better than those of OASIS, SAPS II, and APACHE IV/IVa. Further,

among sparser models (no more than 17 variables), GroupFasterRisk achieve the

highest AUROC and AUPRC.

3.3.2 Predictive Accuracy and Sparsity

As observed in Figure 3.1, GroupFasterRisk models outperform existing risk scores

in mortality prediction while being simpler. I further illustrate this point by comparing
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Table 3.1: Fairness and calibration across population subgroups in eICU.

Ethnicity (alphabetical order) Gender

African American Asian Caucasian Hispanic Native American Other/Unknown Female Male

Percentage (%) 11.17 1.49 76.91 3.86 0.68 4.68 45.08 54.90

AUROC (↑) GFR-10 0.829 0.833 0.837 0.856 0.881 0.849 0.835 0.840
OASIS 0.811 0.797 0.803 0.825 0.824 0.809 0.806 0.805

GFR-15 0.846 0.848 0.854 0.873 0.895 0.860 0.853 0.856
SAPS II 0.846 0.828 0.843 0.859 0.893 0.842 0.844 0.845

GFR-40 0.859 0.861 0.859 0.881 0.902 0.873 0.857 0.865
APACHE IV 0.873 0.858 0.869 0.890 0.903 0.884 0.867 0.875
APACHE IVa 0.875 0.866 0.870 0.893 0.901 0.886 0.869 0.876

AUPRC (↑) GFR-10 0.415 0.390 0.422 0.480 0.558 0.418 0.418 0.429
OASIS 0.345 0.330 0.364 0.410 0.370 0.328 0.356 0.365

GFR-15 0.453 0.454 0.466 0.534 0.555 0.477 0.466 0.471
SAPS II 0.424 0.408 0.435 0.470 0.598 0.395 0.440 0.428

GFR-40 0.488 0.500 0.489 0.553 0.585 0.512 0.488 0.499
APACHE IV 0.488 0.467 0.484 0.536 0.536 0.479 0.478 0.493
APACHE IVa 0.487 0.492 0.487 0.538 0.522 0.484 0.481 0.496

Brier Score (↓) GFR-10 0.064 0.070 0.068 0.065 0.059 0.065 0.068 0.067
OASIS 0.068 0.076 0.072 0.068 0.072 0.070 0.072 0.070

GFR-15 0.062 0.068 0.065 0.061 0.059 0.061 0.065 0.064
SAPS II 0.080 0.080 0.082 0.074 0.072 0.078 0.080 0.081

GFR-40 0.060 0.064 0.064 0.060 0.057 0.059 0.064 0.062
APACHE IV 0.063 0.069 0.066 0.062 0.066 0.064 0.066 0.064
APACHE IVa 0.061 0.065 0.064 0.060 0.062 0.061 0.064 0.062

HL χ2 (↓) GFR-10 27.90 11.00 113.70 24.68 5.48 12.53 58.65 102.74
OASIS 43.48 21.02 135.52 5.23 14.84 11.75 82.52 79.11

GFR-15 23.64 9.88 63.40 10.62 4.43 3.73 13.62 57.75
SAPS II 1070.09 94.34 6599.71 228.75 62.95 333.65 3575.48 4750.90

GFR-40 8.72 5.20 120.03 12.03 11.57 6.09 58.34 97.92
APACHE IV 308.51 34.51 1257.11 78.93 42.53 114.22 835.14 950.18
APACHE IVa 167.60 13.04 502.27 42.78 23.21 62.48 372.68 384.89

SMR (∼ 1) GFR-10 0.946 0.915 1.028 1.017 0.949 1.013 0.993 1.031
OASIS 0.882 1.204 0.922 0.994 0.844 1.002 0.917 0.940

GFR-15 0.974 0.921 1.040 1.046 1.003 0.996 1.002 1.046
SAPS II 0.501 0.570 0.517 0.560 0.513 0.552 0.525 0.517

GFR-40 1.022 0.936 1.039 1.063 0.889 1.033 1.000 1.058
APACHE IV 0.663 0.732 0.731 0.710 0.606 0.697 0.716 0.725
APACHE IVa 0.730 0.820 0.823 0.784 0.704 0.778 0.802 0.815

GroupFasterRisk with more complex ML approaches.

I conducted two experiments to assess the relationship between our methods’ model

complexity and AUROC or AUPRC. In the first experiment, I trained different ML

models using the OASIS features, including Logistic Regression, Random Forest, Ad-

aBoost, EBM, XGBoost, and AutoScore. I then compared their performance against

our GFR-14 model (using our own features) and GroupFasterRisk trained on OA-

SIS features, namely GFR-OASIS. In the second experiment, I trained the same ML

models using all 49 features I obtained from the MIMIC III dataset. I compared these
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(a) Performance vs. Complexity of Group-
FasterRisk and baselines for all 49 features.
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(b) Performance vs. Complexity of Group-
FasterRisk and baselines for OASIS fea-
tures.

Figure 3.3: Evaluation of GroupFasterRisk performance, sparsity and features

models with GFR-40.

I show results based on OASIS features in Figure 3.3b and results based on all features

in Figure 3.3a. For both setups, I find that GroupFasterRisk models (GFR-14,

GFR-40, GFR-OASIS) consistently achieve the best sparsity and high AUROC and

AUPRC. AutoScore models are the least complex and rely on around 100 parame-

ters, but their performance is substantially worse. Random Forest models achieve the

highest AUROC and AUPRC scores, however, these models are very complex and rely

on ∼ 106 parameters, while GroupFasterRisk models use at most 82 parameters.

Other methods such as ℓ2-regularized Logistic Regression and EBM were as complex

as boosted decision trees in terms of the total number of splits across all trees, ∼ 103.
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3.4 Discussion

Multiple aspects of this study are worth discussing. I firstly focus on the advantages

of GroupFasterRisk and then on the limitations of this study.

Figure 3.4: Risk score produced by GroupFasterRisk. This model has a group
sparsity of 15 (GFR-15), which means that the model uses 15 features with multiple
splits per feature.

3.4.1 Interpretability

GroupFasterRisk generates scorecard displays (such as the one in Figure 3.4). From

those displays, people can quickly evaluate the correctness of the model and make

adjustments if desired. For instance, the feature component scores, shown as the rows in

Figure 3.4, allow medical practitioners to interpret the relationship between risk and the

possible values of the features. Additionally, the group sparsity constraint enforces the

selection of, at most, the top γ useful features, informing the user about the meaningful

variables in the prediction-making process. Combined together, this score calculation
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process from GroupFasterRisk models is transparent and interpretable to the user

at any level of medical expertise, which could be beneficial for healthcare applications

as it enables the discovery of new knowledge or potential bias in the model without the

need for post-hoc explanations. Besides interpretability, GroupFasterRisk’ models

tend to be robust and fair across different ethnic and gender groups (Table 3.1).

3.4.2 Monotonic Correction

If the model does not suit medical knowledge due to empirical noise in data, prac-

titioners could further adopt monotonicity corrections to adjust the model. I find

that models corrected with monotonicity constraints demonstrate increased predictive

accuracy in OOD evaluations compared to the original, uncorrected models (see Ap-

pendix for results without monotonic corrections). This suggests that incorporating

domain-relevant knowledge into risk score design could further enhance performance.

3.4.3 Sparsity

The most accurate baselines we considered, APACHE IV/IVa, rely on 142 features.

In comparison, GroupFasterRisk’s most complex model, GFR-40, achieves similar

performances as APACHE IV/IVa while requiring only 40 features (Figure 3.1). In

practice, this 3.5 times difference in the number of features can be quite significant,

especially when accounted for missing values or other collection errors that commonly

occur in medical data [57]. While there are several ways to handle missing data [58, 59],

these methods can negatively affect prediction accuracy, limit performance guarantees,

and create an extra task for medical practitioners to complete in practice. Further-

more, compared to other ML approaches, GroupFasterRisk models are 1,000 times

sparser in model complexity while achieving comparable performance (Figure 3.3a,
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Figure 3.3b).

3.4.4 Limitations

There are some limitations in this study:

1. Although MIMIC III and eICU are the largest and most detailed publicly avail-

able datasets that have ever existed on ICU monitoring, they were collected from

hospitals in the United States between 2001-2012 and 2014-2015, respectively,

which limits this study from performing further evaluation on samples collected

from other locations or time periods.

2. Changes in patterns over time are still not fully measured due to how MIMIC

III and eICU collect data. For instance, vital signs in eICU are first recorded

as one-minute averages and then stored as five-minute medians. Although this

study primarily uses summary statistics, the data collection issues may still be

affected by changes in measurement processing or aggregation.

3. To have more access to the measurements of the patients, the MIMIC III cohort

in this study considers patients who stayed in the ICU for more than 24 hours

(see Appendix for more details), which may cause bias in predicting mortality

for patients admitted to the ICU for less than one day. Thus, to provide a more

comprehensive evaluation, our eICU cohort includes all patients who have been

admitted for more than 4 hours (this is consistent with cohorts used to create

OASIS and APACHE IV). The results in the previous section fully support that

GroupFasterRisk performs well under these shifted hours of ICU stay.
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3.5 Appendix

3.5.1 Study Population

Figure 3.5: Flow chart of the study population selection on MIMIC III and eICU
datasets. i and n are ICU stays and number of patients, respectively.

3.5.2 Data Processing

To include time series measurements such as vital signs, I extracted the minimum and

maximum of these features during the first 24 hours of a patient’s unit stay. This allows

the algorithm to focus on the worst deviation from a normal range of values. Minimum

and maximum values of time series data are often easier for medical practitioners to

observe than other more sophisticated statistics (such as variance). Additionally, most

existing severity of illness scores also rely on the worst values over a time period.
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3.5.3 Feature Selection and Engineering

The feature selection process was divided into two stages.

1. I created a set of features by taking the union of features used by existing severity

of illness scores. Specifically, I consider features from APS III [60], SAPS II [61],

OASIS [33], SOFA [27], LODS [62], and SIRS [63]. I computed the area under

the receiver-operating characteristic curve (AUROC) value for every feature in-

dividually. This provides us with a ranking of all features, and we selected the

top 49 features for this study.

2. I transformed every continuous or categorical feature into a set of binary decision

splits. This allows GroupFasterRisk to capture a non-linear step function for

each feature when it learns coefficients for those decision splits.

I used two methods to create the splits: 1) for binary or categorical features,

a split was created between each pair of unique feature values for each feature.

2) I obtained the distribution of feature values based on the training data and

computed quantiles of the distributions and used them as decision splits. Alter-

natively, the splits can be set as a hyperparameter. I create an indicator vector

for missing values and do not perform imputation on them.

This preprocessing procedure makes GroupFasterRisk models generalized additive

models (GAMs), which have been demonstrated to be as accurate as any black box

ML model for most tabular data problems [64, 65, 51].

We perform an additional study on the effect of bin widths for continuous features in

Table 3.2.
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Table 3.2: GroupFasterRisk performance under various bin widths. To allow
GroupFasterRisk to better utilize continuous variables, a binarization technique
is applied, which transforms a continuous variable into B quantiles (bins).

Number of Bins (B) 100 50 20 10 5 4

Average Mean AUROC Training 0.847 ± 0.030 0.849 ± 0.029 0.856 ± 0.020 0.850 ± 0.023 0.847 ± 0.016 0.841 ± 0.019
Validation 0.828 ± 0.030 0.832 ± 0.028 0.843 ± 0.018 0.839 ± 0.022 0.840 ± 0.015 0.835 ± 0.018

Average Mean AUPRC Training 0.444 ± 0.057 0.448 ± 0.056 0.451 ± 0.043 0.439 ± 0.046 0.430 ± 0.032 0.413 ± 0.036
Validation 0.394 ± 0.047 0.401 ± 0.047 0.414 ± 0.033 0.413 ± 0.037 0.412 ± 0.028 0.401 ± 0.032

3.5.4 Optimization Procedure Outline

To solve the optimization problem in Equation (3.1), I solve three consecutive optimiza-

tion sub-problems. In the first step, Equation (3.2), I approximately find a near-optimal

solution for sparse logistic regression with sparsity and box constraints, denoted as

λ and (a, b), respectively.

(w(∗), w
(∗)
0 ) ∈ argmin

w,w0

L (w, w0,D) =
n∑

i=1

log
(
1 + exp

(
−yi

(
x̃⊤
i w + w0

)))
s.t. ∥w∥0 ≤ λ,w ∈ Rp, w0 ∈ R

∀j ∈ [p], wj ∈ [aj, bj]

Γ∑
k=1

I {wGk
̸= 0} ≤ γ.

(3.2)

Solving Equation (3.2) produces an accurate and sparse real-valued solution (w(∗), w
(∗)
0 )

that satisfies both feature and group sparsity constraints.

In the second step, I aim to produce multiple real-valued near-optimal sparse logis-

tic regression solutions under group sparsity constraint, which is formulated
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as:

(w(t), w
(t)
0 ) obeys L(w(t), w

(t)
0 ,D) ≤ L(w(∗), w

(∗)
0 ,D)(1 + ϵu)

s.t. ∥w(t)∥0 ≤ λ,w(t) ∈ Rp, w
(t)
0 ∈ R

∀j ∈ [p], w
(t)
j ∈ [aj, bj]

Γ∑
k=1

I
{
w

(t)
Gk
̸= 0

}
≤ γ.

(3.3)

In particular, in order to solve Equation (3.3), I delete a feature j− with support in

supp(w(∗)) and add a new feature with index j+. This procedure is repeated to turn

the solution (w(∗), w0) into diverse sparse solutions with similar logistic loss. Note that

during swapping, I only consider the alternative features that obey various constraints

(including box constraint, groups-sparsity constraint, and monotonicity constraint) to

ensure the new solutions are valid models.

Find all j+ s.t. min
δ∈[aj+ ,bj+ ]

L(w(∗) − w
(∗)
j−
ej− + δej+ , w0,D) ≤ L(w(∗), w

(∗)
0 ,D) (1 + ϵu) .

(3.4)

I solve Equation (3.3) several times (set by the user as a hyper-parameter), after

which we have a pool of distinct, almost-optimal sparse logistic regression models, and

the top M models with the smallest logistic loss are selected, creating M solutions

{(w(t), w
(t)
0 )}Mt=1. Note that the user can set ϵu and M arbitrarily, controlling the

tolerance in logistic loss and the desired maximum quantity of diverse sparse solutions.

Lastly, for each solution in {(w(t), w
(t)
0 )}Mt=1, I compute an integer risk score, (w(+t), w

(+t)
0 ),
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by performing rounding to a real-valued solution:

L
(
w(+t), w

(+t)
0 ,D/m(t)

)
≤ L

(
w(t), w

(t)
0 ,D

)
+ ϵt

s.t. w(+t) ∈ Zp, w
(+t)
0 ∈ Z

∀j ∈ [p], w
(+t)
j ∈ [aj, bj]

Γ∑
k=1

I
{
w

(+t)
Gk
̸= 0

}
≤ γ.

(3.5)

where ϵt is a gap in logistic loss with the near-optimal solution due to rounding.

A theoretical upper bound on ϵt was proven in [47]. In order to round the coeffi-

cients, the following steps are performed: 1) we define the largest multiplier mmax as

max{∥a∥∞, ∥b∥∞}/∥w(∗)∥∞, and the smallest multiplier mmin to be 1. 2) select Nm

equally spaced values within the range [mmin,mmax], giving us a set of multipliers. 3)

Using this set of multipliers, scale the dataset, obtaining {1/m, x̃i/m, yi}ni=1. 4) Send

the scaled dataset to the sequential rounding algorithm [47, 46], which rounds the co-

efficients one at a time to an integer that best maintains accuracy (not necessarily the

nearest integer). Use the integer coefficients and multiplier with the smallest logistic

loss as our final solution.

To perform monotonic correction, GroupFasterRisk allows users to set box con-

straints (aGl
, bGl

) for each feature l independently. These constraints can be imposed

after any of the three GroupFasterRisk optimization steps. Since during the fea-

ture preprocessing, we transformed every continuous or categorical feature into a set

of binary decision splits, each feature corresponds to a set of step functions. Imposing

monotonicity is equivalent to forcing all coefficients for all step functions of one fea-

ture to be positive (for decreasing functions) or negative (for increasing functions). If

aGl
, bGl

≥ 0, then fl(xl) is monotonically decreasing; if aGl
, bGl

≤ 0, then component
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function fl is monotonically increasing.

Table 3.3: Ablation study on monotonicity correction. The evaluation is performed
OOD on eICU. A performance boost is observed when monotonicity correction was
applied, likely because correct domain information was included in the individual com-
ponent scores of the features.

Sparse Not Sparse

GFR-10 OASIS GFR-15 SAPS II GFR-40 APACHE IV APACHE IVa
F = 10 F = 10 F = 15 F = 17 F = 40 F = 142 F = 142

With monotonicity correction AUROC 0.844 0.805 0.859 0.844 0.864 0.871 0.873
AUPRC 0.436 0.361 0.476 0.433 0.495 0.487 0.489

No monotonicity correction AUROC 0.840 0.805 0.857 0.844 0.863 0.871 0.873
AUPRC 0.427 0.361 0.467 0.433 0.491 0.487 0.489
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Chapter 4

Synthetic Electronic Health Records

with Diffusion Models

4.1 Introduction

The Electronic Health Record (EHR) is a digital version of the patient’s medical history

maintained by healthcare providers. It includes information such as demographic at-

tributes, vital signals, and lab measurements that are sensitive in nature and important

for clinical research. Researchers have been utilizing statistical and machine learning

(ML) methods to analyze EHR for a variety of downstream tasks such as disease diag-

nosis, in-hospital mortality prediction, and disease phenotyping [66, 67]. However, due

to privacy concerns, EHR data is strictly regulated, and thus the availability of EHR

data is often limited, creating barriers to the development of computational models in

the field of healthcare. Widely used EHR de-identification methods to preserve pa-

tient information privacy are criticized for having high risks of re-identification of the

individuals [68].

Instead of applying privacy-preserving methods that can adversely affect EHR data
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utility [69], EHR synthetic data generation is one promising solution to protect patient

privacy. Realistic synthetic data preserves crucial clinical information in real data while

preventing patient information leakage [70, 71]. Synthetic data also has the added ben-

efit of providing a larger sample size for downstream analysis than de-identifying real

samples [72]. As a result, more research initiatives have begun to consider synthetic

data sharing, such as the National COVID Cohort Collaborative supported by the U.S.

National Institutes of Health and the Clinical Practice Research Datalink sponsored by

the U.K. National Institute for Health and Care Research [73, 74]. With the advance-

ment in ML techniques, applying generative models to synthesize high-fidelity EHR

data is a popular research of interest [70]. Recent advances in generative models have

shown significant success in generating realistic high-dimensional data like images, au-

dio, and texts [75, 76], suggesting the potential for these models to handle EHR data

with complex statistical characteristics.

Some representative work utilizing generative models for EHR data synthesis includes

medGAN [77], medBGAN [78], and EHR-Safe [71]. However, most approaches to EHR

data synthesis are GAN-based, and GANs are known for their difficulties in model

training and deployments due to training instability and mode collapse [79]. Recently,

diffusion probabilistic models have shown superb ability over GANs in generating high-

fidelity image data [80, 81, 82]. A few studies thus propose to generate synthetic EHR

data via diffusion models given their remarkable data generation performance [83, 84].

However, most EHR data synthesis methods, either GAN-based or diffusion-based,

focus on binary or categorical variables such as the International Classification of Dis-

eases (ICD) codes. Additionally, there is limited prior work on generating EHR data

with temporal information, and most state-of-the-art time series generative models are

GAN-based. The sole study that employs diffusion models for EHR time series over-

looks discrete time series in its modeling process [85]. It resorts to Gaussian diffusion
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for generating discrete sequences, treating them similarly to real-valued sequences but

with further post-processing of the model output. These observations motivate me to

bridge the gap by introducing a novel diffusion-based method to generate realistic EHR

time series data with mixed variable types.

Specifically, this chapter aims to focus on the following:

• I present TimeDiff, a diffusion probabilistic model that uses a bidirectional

recurrent neural network (BRNN) architecture for high-utility time series data

generation.

• By combining multinomial and Gaussian diffusions, TimeDiff can simultane-

ously generate both real and discrete valued time series directly. To the best

of my knowledge, TimeDiff is the first work in applying this mixed diffusion

approach on EHR time series generation.

• I experimentally demonstrates thatTimeDiff outperforms state-of-the-art meth-

ods for time series data generation by a big margin in terms of data utility.

Additionally, our model requires less training effort than GANs.

• I further evaluate TimeDiff on potential applications in healthcare and show it

can generate useful synthetic samples for ML model development while protecting

patient privacy.

4.2 Related Work

4.2.1 Time Series Generation

Prior sequential generation methods using GANs rely primarily on binary adversarial

feedback [86, 87], and supervised sequence models mainly focus on tasks such as pre-
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diction [88], forecasting [89], and classification [90]. TimeGAN [91] was one of the first

methods to preserve temporal dynamics in time series synthesis. The architecture com-

prises an embedding layer, recovery mechanism, generator, and discriminator, trained

using both supervised and unsupervised losses. GT-GAN [92] considers the genera-

tion of both regular and irregular time series data using a neural controlled differential

equation (NCDE) encoder [93] and GRU-ODE decoder [94]. This framework, combined

with a continuous time flow processes (CTFPs) generator [95] and a GRU-ODE dis-

criminator, outperformed existing methods in general-purpose time series generation.

Recently, [96] proposed to generate time series data for forecasting and imputation us-

ing discrete or continuous stochastic process diffusion (DSPD/CSPD). Their proposed

method views time series as discrete realizations of an underlying continuous function.

Both DSPD and CSPD use either the Gaussian or Ornstein-Uhlenbec process to model

noise and apply it to the entire time series. The learned distribution over continuous

functions is then used to generate synthetic time series samples.

4.2.2 Diffusion Models

Diffusion models [97] have been proposed and achieved excellent performance in the

field of computer vision and natural language processing. [80] proposed denoising dif-

fusion probabilistic models (DDPM) that generate high-quality images by recovering

from white latent noise. [98] proposed a vector-quantized diffusion model on text-to-

image synthesis with significant improvement over GANs regarding scene complexity

and diversity of the generated images. [99] suggested that the diffusion models with

optimized architecture outperform GANs on image synthesis tasks. [100] proposed a

diffusion model, Imagen, incorporated with a language model for text-to-image synthe-

sis with state-of-the-art results. [101] introduced TabDDPM, an extension of DDPM

for heterogeneous tabular data generation, outperforming GAN-based models. [102]
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proposed ChiroDiff, a diffusion model that considers temporal information and gener-

ates chirographic data. Besides advancements in practical applications, some recent

developments in theory for diffusion models demonstrate the effectiveness of this model

class. Theoretical foundations explaining the empirical success of diffusion or score-

based generative models have been established [103, 104, 105].

4.2.3 EHR Data Generation

A considerable amount of prior work has been done on generating EHR data. [77]

proposed medGAN that generates EHR discrete variables. Built upon medGAN, [78]

suggested two models, medBGAN and medWGAN, that synthesize EHR binary or dis-

crete variables on International Classification of Diseases (ICD) codes. [106] developed

a GAN that can generate high-utility EHR with both discrete and continuous data.

[107] proposed the EHR Variational Autoencoder that synthesizes sequences of EHR

discrete variables (i.e., diagnosis, medications, and procedures). [83] developed Med-

Diff, a diffusion model that generates user-conditioned EHR discrete variables. [84]

created EHRDiff by utilizing the diffusion model to generate a collection of ICD di-

agnosis codes. [108] used continuous-time diffusion models to generate synthetic EHR

tabular data. [109] applied TabDDPM to synthesize tabular healthcare data.

However, most existing work focuses on discrete or tabular data generation. There

is limited literature on EHR time series data generation, and this area of research

has not yet received much attention [110]. In 2017, RCGAN [87] was created for

generating multivariate medical time series data by employing RNNs as the generator

and discriminator. Until recently, [71] proposed EHR-Safe that consists of a GAN and

an encoder-decoder module. EHR-Safe can generate realistic time series and static

variables in EHR with mixed data types. [111] developed EHR-M-GAN that generates
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mixed-type time series in EHR using separate encoders for each data type. Moreover,

[85] suggested utilizing diffusion models to synthesize discrete and continuous EHR

time series. However, their approach mainly relies on Gaussian diffusion and adopts a

U-Net architecture [112]. The generation of discrete time series is achieved by taking

argmax of softmax over real-valued one-hot representations. By contrast, our proposed

method considers multinomial diffusion for discrete time series generation, allowing the

generation of discrete variables directly.

4.3 Preliminaries

In this section, I explain diffusion models following the work of [97] and [80]. Dif-

fusion models belong to a class of latent variable models formulated as pθ(x
(0)) =∫

pθ(x
(0:T )) dx(1:T ), where x(0) is a sample following the data distribution q(x(0)) and

{x(t)}Tt=1 are latents with the same dimensionality as x(0). The model consists of two

stages: a forward process that gradually adds Gaussian noise to the original data sam-

ple and a reverse process that draws synthetic samples from learned distributions by

gradually denoising from the pure Gaussian noise sample.

The forward process is defined as a Markov chain that gradually adds Gaussian noise

to x(0) via a sequence of variances
{
β(t)
}T
t=1

:

q
(
x(1:T )|x(0)

)
=

T∏
t=1

q
(
x(t)|x(t−1)

)
, q

(
x(t)|x(t−1)

)
:= N

(
x(t);

√
1− β(t)x(t−1), β(t)I

)
.

(4.1)

In practice, the variances β(t) in the forward process can be determined by reparameter-

ization or via scheduling as a hyperparameter [113]. The process successively converts

data x(0) to white latent noise x(T ). The noisy sample x(t) can be obtained directly from

the original sample x(0) by sampling from q(x(t)|x(0)) = N
(
x(t);
√
ᾱ(t)x(0), (1− ᾱ(t))I

)
,
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where α(t) = 1− β(t) and ᾱ(t) =
∏t

i=1 α
(i).

The reverse process is the joint distribution pθ(x
(0:T )) = p(x(T ))

∏T
t=1 pθ(x

(t−1)|x(t)),

which is a Markov chain that starts from white latent noise and gradually denoises

noisy samples to generate synthetic samples:

pθ
(
x(t−1)|x(t)

)
:= N

(
x(t−1);µθ(x

(t), t),Σθ(x
(t), t)

)
, p

(
x(T )

)
:= N

(
x(T );0, I

)
. (4.2)

Since computing pθ(x
(0)) =

∫
pθ(x

(0:T )) dx(1:T ) directly is intractable, it is approxi-

mated by maximizing the variational lower bound on the log-likelihood:

E
[
log pθ(x

(0))
]
≥ Eq

[
log

pθ(x
(0:T ))

q(x(1:T )|x(0))

]
:= ELBO (4.3)

The evidence lower bound (ELBO) in Equation (4.3) can be rewritten in a form in-

volving KL divergences between Gaussian distributions [80] shown in Equation (4.4).

The objective is to maximize the variational lower bound on the log-likelihood which

can be written in a form involving KL divergences between Gaussian distributions [80]:

E
[
log pθ(x

(0)|x(1))︸ ︷︷ ︸
A1

−DKL

(
q(x(T )|x(0)) ∥ p(x(T ))

)︸ ︷︷ ︸
A2

−
T∑
t=2

DKL

(
q(x(t−1)|x(t),x(0)) ∥ pθ(x(t−1)|x(t))

)︸ ︷︷ ︸
A3

]
.

(4.4)

Specifically, A1 can be interpreted as a reconstruction term that provides the log prob-

ability of the original data sample given x(1). A2 can be ignored in the optimization

since both distributions are white noise and are not parameterized. A3 is a term that

ensures consistency between the ground truth, tractable forward process posterior, and

our approximated and parameterized distribution. The forward process posterior can
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be expressed as shown in Equation (4.5):

µ̃(t)(x(t),x(0)) =
1√
α(t)

(
x(t) − β(t)

√
1− ᾱ(t)

ϵ(t)
)
, ϵ(t) ∼ N (0, I),

q
(
x(t−1)|x(t),x(0)

)
:= N

(
x(t−1); µ̃(t)(x(t),x(0)), β̃(t)I

)
, β̃(t) =

1− ᾱ(t−1)

1− ᾱ(t)
β(t). (4.5)

Under a specific parameterization described in [80], the training objective can be ex-

pressed as follows:

E
[

1

2(σ(t))2

∥∥∥µ̃(t)
(
x(t),x(0)

)
− µθ

(
x(t), t

)∥∥∥2]+ C

= E
[

(β(t))2

2(σ(t))2α(t)(1− ᾱ(t))

∥∥∥ϵ− ϵθ(
√
ᾱ(t)x(0) +

√
1− ᾱ(t)ϵ, t)

∥∥∥2]+ C,

(4.6)

where C is a constant that is not trainable. Empirically, a neural network sθ is trained

to approximate ϵ. This ϵ-prediction objective resembles denoising score matching, and

the sampling procedure resembles Langevin dynamics using sθ as an estimator of the

gradient of the data distribution [103, 104].

4.4 Methodology

In this section, I discuss the methodology for generating realistic synthetic EHR time

series data. The scope of this work considers the generation of both numerical (real-

valued) and discrete time series, as both are present in EHR. Specifically, let D denote

our EHR time series dataset. Each patient in D has numerical and discrete multivariate

time series X ∈ RPr×L and C ∈ ZPd×L, respectively. L is the number of time steps,

and Pr and Pd are the number of variables for numerical and discrete data types.
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4.4.1 Diffusion Process on EHR Time Series

To generate both numerical and discrete time series, I consider a “mixed sequence

diffusion” approach by adding Gaussian and multinomial noises. For numerical time

series, I perform Gaussian diffusion by adding independent Gaussian noise similar to

DDPM. The forward process is thus defined as:

q
(
X(1:T )|X(0)

)
=

T∏
t=1

L∏
l=1

q
(
X

(t)
·,l |X

(t−1)
·,l

)
, (4.7)

where q(X
(t)
·,l |X

(t−1)
·,l ) = N (X

(t)
·,l ;
√
1− β(t)X

(t−1)
·,l , β(t)I) and X·,l is the l

th observation

of the numerical time series. In a similar fashion as Equation (4.2), we define the

reverse process for numerical features as pθ(X
(0:T )) = p(X(T )

)∏T
t=1 pθ

(
X(t−1)|X(t)),

where

pθ
(
X(t−1)|X(t)

)
:= N

(
X(t−1);µθ(X

(t), t), β̃(t)I
)
,

µθ(X
(t), t) =

1√
α(t)

(
X(t)− β(t)

√
1− ᾱ(t)

sθ(X
(t), t)

)
, β̃(t) =

1− ᾱ(t−1)

1− ᾱ(t)
β(t). (4.8)

In order to model discrete-valued time series, we use multinomial diffusion [114]. The

forward process is defined as:

q
(
C̃(1:T )|C̃(0)

)
=

T∏
t=1

Pd∏
p=1

L∏
l=1

q
(
C̃

(t)
p,l |C̃

(t−1)
p,l

)
, (4.9)

q
(
C̃

(t)
p,l |C̃

(t−1)
p,l

)
:= C

(
C̃

(t)
p,l ; (1− β(t))C̃

(t−1)
p,l + β(t)/K

)
, (4.10)

where C is a categorical distribution, C̃(0)
p,l ∈ {0, 1}K is a one-hot encoded representation

of Cp,l
1, and the addition and subtraction between scalars and vectors are performed

1We perform one-hot encoding on the discrete time series across the feature dimension. For exam-
ple, if our time series is {0, 1, 2}, its one-hot representation becomes {[1, 0, 0]⊤, [0, 1, 0]⊤, [0, 0, 1]⊤}.
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element-wise. The forward process posterior distribution is defined as follows:

q
(
C̃

(t−1)
p,l |C̃

(t)
p,l , C̃

(0)
p,l

)
:= C

(
C̃

(t−1)
p,l ;ϕ/

K∑
k=1

ϕk

)
, (4.11)

ϕ =
(
α(t)C̃

(t)
p,l + (1− α(t))/K

)
⊙
(
ᾱ(t−1)C̃

(0)
p,l + (1− ᾱ(t−1))/K

)
. (4.12)

The reverse process pθ(C̃
(t−1)
p,l |C̃

(t)
p,l ) is parameterized as q

(
C̃

(t−1)
p,l |C̃

(t)
p,l , sθ(C̃

(t)
p,l , t)

)
. We

train our neural network, sθ, using both Gaussian and multinomial diffusion processes:

LN (θ) := EX(0),ϵ,t

[∥∥∥ϵ− sθ
(√

ᾱ(t)X(0) +
√

1− ᾱ(t)ϵ, t
)∥∥∥2], (4.13)

LC(θ) := Ep,l

[
T∑
t=2

DKL

(
q
(
C̃

(t−1)
p,l |C̃

(t)
p,l , C̃

(0)
p,l

) ∥∥∥ pθ
(
C̃

(t−1)
p,l |C̃

(t)
p,l

))]
, (4.14)

where LN and LC are the losses for numerical and discrete multivariate time series, re-

spectively. The training of the neural network is performed by minimizing the following

loss with stochastic gradient descent (such as Adam optimizer [115]):

Ltrain(θ) = λLC(θ) + LN (θ), (4.15)

where λ is a hyperparameter for creating a balance between the two losses. We inves-

tigate the effects of λ in the Appendix section.

4.4.2 Missing Value Representation

In medical applications, missing data and variable measurement times play a crucial

role as they could provide additional information and indicate a patient’s health status
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[57]. I thus derive a missing indicator mask M ∈ {0, 1}Pr×L 2 for each X ∈ D3:

Mp,l =


0, if Xp,l is present;

1, if Xp,l is missing.

(4.16)

Then M encodes the measurement time points of X. If X contains missing val-

ues, I impute them in the initial value of the forward process, i.e., X(0), using the

corresponding sample mean. Nevertheless, M retains the information regarding the

positions of missing values. This method generates both discrete and numerical time

series, allowing us to represent and generate M as a discrete time series seamlessly.

4.4.3 TimeDiff Architecture

In this section, I describe the architecture for TimeDiff. A commonly used archi-

tecture in DDPM is U-Net [112]. However, most U-Net-based models are tailored to

image generation tasks, requiring the neural network to process pixel-based data rather

than sequential information [116, 80, 82]. Even its one-dimensional variant, 1D-U-Net,

comes with limitations such as restriction on the input sequence length (which must

be a multiple of U-Net multipliers) and a tendency to lose temporal dynamics infor-

mation during down-sampling. On the other hand, TabDDPM [101] proposed a mixed

diffusion approach for tabular data generation but relied on a multilayer perceptron

architecture, making it improper for multivariate time series generation.

To address this challenge of handling EHR time series, we need an architecture capable

of encoding sequential information while being flexible to the input sequence length.

The time-conditional bidirectional RNN (BRNN) or neural controlled differential equa-

2Or alternatively, M ∈ {0, 1}Pd×L if the time series is discrete.
3For simplicity in writing, we refer to X only, but this procedure can also be applied on C.
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tion (NCDE) [93] can be possible options. After careful evaluation, I found BRNN

without attention mechanism offers superior computational efficiency and have chosen

it as the neural backbone sθ for all of our experiments. A more detailed discussion of

NCDE is provided in Appendix.

4.4.3.1 Diffusion Step Embedding

To inform the model about the current diffusion time step t, we use sinusoidal posi-

tional embedding [117]. The embedding vector output from the embedding layer then

goes through two fully connected (FC) layers with GeLU activation in between [118].

The embedding vector is then fed to a SiLU activation [118] and another FC layer. The

purpose of this additional FC layer is to adjust the dimensionality of the embedding

vector to match the stacked hidden states from BRNN. Specifically, I set the dimen-

sionality of the output to be two times the size of the hidden dimension from BRNN.

I denote the transformed embedding vector as tembed. This vector is then split into

two vectors, each with half of the current size, namely tembed scale and tembed shift. Both

vectors share the same dimensionality as BRNN’s hidden states and serve to inform

the network about the current diffusion time step.

4.4.3.2 Time-conditional BRNN

In practice, BRNN can be implemented with either LSTM or GRU units. To condition

BRNN on time, I follow these steps. I first obtain noisy samples from Gaussian (for

numerical data) and multinomial (for discrete data) diffusion. The two samples are

concatenated and fed to our BRNN, which returns a sequence of hidden states {hl}Ll=1

that stores the temporal dynamics information about the time series. To stabilize

learning and enable proper utilization of tembed, I apply layernorm [119] on {hl}Ll=1.

The normalized sequence of hidden states, {h̃l}Ll=1, is then scaled and shifted using
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{h̃l ⊙ (tembed scale + 1) + tembed shift}Ll=1. These scaled hidden states contain informa-

tion about the current diffusion step t, which is then passed through an FC layer to

produce the final output. The output contains predictions for both multinomial and

Gaussian diffusions, which are extracted correspondingly and used to calculate Ltrain

in Equation (4.15).

4.5 Results

4.5.1 Datasets

I use four publicly available EHR datasets to evaluate TimeDiff: Medical Information

Mart for Intensive Care III and IV (MIMIC III/IV) [48, 120], the eICU Collaborative

Research Database (eICU) [121], and high time resolution ICU dataset (HiRID) [122].

In order to evaluate TimeDiff with state-of-the-art methods for time series genera-

tion on non-EHR datasets, I include Stocks and Energy datasets used in studies that

proposed TimeGAN [91] and GT-GAN [92].

4.5.2 Baselines

I compareTimeDiff with eight methods: EHR-M-GAN [111], GT-GAN [92], TimeGAN

[91], RCGAN [87], C-RNN-GAN [86], RNNs trained with teacher forcing (T-Forcing)

[123, 124] and professor forcing (P-Forcing) [125], and discrete or continuous stochas-

tic process diffusion (DSPD/CSPD) with Gaussian (GP) or Ornstein-Uhlenbeck (OU)

processes [96].
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4.5.3 Metrics

(1-2) Discriminative and Predictive Scores: A GRU-based discriminator is trained to

distinguish between real and synthetic samples. The discriminative score is |0.5 −

Accuracy|. For the predictive score, a GRU-based predictor is trained on synthetic

samples and evaluated on real samples for next-step vector prediction based on mean

absolute error over each sequence.

(3) Train on Synthetic, Test on Real (TSTR): I train ML models entirely on synthetic

data and evaluate them on real test data based on the area under the receiver operating

characteristic curve (AUC) for in-hospital mortality prediction. I compare the TSTR

score to the Train on Real, Test on Real (TRTR) score, which is the AUC obtained

from the model trained on real training data and evaluated on real test data.

(4) Train on Synthetic and Real, Test on Real (TSRTR): Similar to TSTR, I train ML

models and evaluate them on real test data using AUC. I fix the size of real training

data to 2000 and add more synthetic samples to train ML models. This metric evaluates

the impact on ML models when their training data includes an increasing amount of

synthetic data. It also simulates the practical scenario where practitioners use synthetic

samples to increase the sample size of the training data for model development.

(5) t-SNE: I flatten the feature dimension and use t-SNE dimension reduction visu-

alization [126] on synthetic, real training, and real testing samples. This qualitative

metric measures the similarity of synthetic and real samples in two-dimensional space.

(6) Nearest Neighbor Adversarial Accuracy Risk (NNAA): This score measures the

degree to which a generative model overfits the real training data, a factor that could

raise privacy-related concerns [127]. It is the difference between two discriminative

accuracies, AAtest and AAtrain.
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(7) Membership Inference Risk (MIR): An F1 score is calculated based on whether an

adversary can correctly identify the membership of a synthetic data sample [128].

For all the experiments, I split each dataset into training and testing sets and used

the training set to develop generative models. The synthetic samples obtained from

trained generative models are then used for evaluation. We repeat each experiment

over 10 times and report the mean and standard deviation of each quantitative metric.

Further details for our experiments and evaluation metrics are discussed in Appendix.

4.5.4 Results

Table 4.1: Comparison of predictive and discriminative scores between TimeDiff and
the baselines.

Metric Method Stocks Energy MIMIC-III MIMIC-IV HiRID eICU

TimeDiff .048±.028 .088±.018 .028±.023 .030±.022 .333±.056 .015±.007
EHR-M-GAN .483±.027 .497±.006 .499±.002 .499±.001 .496±.003 .488±.022
DSPD-GP .081±.034 .416±.016 .491±.002 .478±.020 .489±.004 .327±.020
DSPD-OU .098±.030 .290±.010 .456±.014 .444±.037 .481±.007 .367±.018
CSPD-GP .313±.061 .392±.007 .498±.001 .488±.010 .485±.007 .489±.010

Discriminative CSPD-OU .283±.039 .384±.012 .494±.002 .479±.005 .489±.004 .479±.017
Score GT-GAN .077±.031 .221±.068 .488±.026 .472±.014 .455±.015 .448±.043
(↓) TimeGAN .102±.021 .236±.012 .473±.019 .452±.027 .498±.002 .434±.061

RCGAN .196±.027 .336±.017 .498±.001 .490±.003 .499±.001 .490±.023
C-RNN-GAN .399±.028 .499±.001 .500±.000 .499±.000 .499±.001 .493±.010
T-Forcing .226±.035 .483±.004 .499±.001 .497±.002 .480±.010 .479±.011
P-Forcing .257±.026 .412±.006 .494±.006 .498±.002 .494±.004 .367±.047
Real Data .019±.016 .016±.006 .012±.006 .014±.011 .014±.015 .004±.003

TimeDiff .037±.000 .251±.000 .469±.003 .432±.002 .292±.018 .309±.019
EHR-M-GAN .120±.047 .254±.001 .861±.072 .880±.079 .624±.028 .913±.179
DSPD-GP .038±.000 .260±.001 .509±.014 .586±.026 .404±.013 .320±.018
DSPD-OU .039±.000 .252±.000 .497±.006 .474±.023 .397±.024 .317±.023
CSPD-GP .041±.000 .257±.001 1.083±.002 .496±.034 .341±.029 .624±.066

Predictive CSPD-OU .044±.000 .253±.000 .566±.006 .516±.051 .439±.010 .382±.026
Score GT-GAN .040±.000 .312±.002 .584±.010 .517±.016 .386±.033 .487±.033
(↓) TimeGAN .038±.001 .273±.004 .727±.010 .548±.022 .729±.039 .367±.025

RCGAN .040±.001 .292±.005 .837±.040 .700±.014 .675±.074 .890±.017
C-RNN-GAN .038±.000 .483±.005 .933±.046 .811±.048 .727±.082 .769±.045
T-Forcing .038±.001 .315±.005 .840±.013 .641±.017 .364 ±.018 .547±.069
P-Forcing .043±.001 .303±.006 .683±.031 .557±.030 .445±.018 .345±.021
Real Data .036±.001 .250±.003 .467±.005 .433±.001 .267±.012 .304±.017
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TimeDiff EHR-M-GAN DSPD-GP GT-GAN TimeGAN RCGAN

Figure 4.1: t-SNE for eICU (1st row) and MIMIC-IV (2rd row). Synthetic samples in
blue, real training samples in red, and real testing samples in orange.

4.5.4.1 Predictive and Discriminative Scores

As presented in Table 4.1, I observe that TimeDiff consistently achieves the low-

est discriminative and predictive scores across six datasets compared to all baselines.

TimeDiff achieves significantly lower discriminative scores and close-to-real predic-

tive scores on all four EHR datasets. For instance, TimeDiff yields a 95.4% lower

mean discriminative score compared to DSPD-GP and obtains a 1.6% higher mean

predictive score than real testing data on the eICU dataset. For non-EHR datasets,

TimeDiff achieves a 37.7% lower and a 60.2% lower mean discriminative scores on

the Stocks and Energy datasets than GT-GAN while having similar mean predictive

scores as using real testing data.

4.5.4.2 t-SNE

As shown in Figure 4.1, the synthetic samples produced by TimeDiff demonstrate

remarkable overlap with both real training and testing data, indicating their high

fidelity.
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4.5.4.3 Runtime

I compare the number of hours to train TimeDiff with EHR-M-GAN, TimeGAN,

and GT-GAN. I used Intel Xeon Gold 6226 Processor and Nvidia GeForce 2080 RTX

Ti for runtime comparison of all models. As indicated by Table 4.2, TimeDiff can

produce high-fidelity synthetic samples with less training time compared to GAN-based

approaches.

4.5.4.4 In-hospital Mortality Prediction

In-hospital mortality prediction is one of the most important downstream tasks utilizing

EHR data [129, 130]. To evaluate the utility of the generated EHR time series samples

using TimeDiff, I perform in-hospital mortality prediction using six ML algorithms:

XGBoost (XGB) [52], Random Forest (RF) [42], AdaBoost (AB) [53], and ℓ1 and ℓ2

regularized Logistic Regression (LR L1/L2) [131]. The prediction models are trained

using synthetic samples from TimeDiff and assessed on real testing data.

As indicated in Figure 4.2, I observe that models trained using pure synthetic samples

have similar AUCs compared to those trained on the real training data. Furthermore, to

simulate the practical scenario where synthetic samples are used for data augmentation,

I calculate the TSRTR scores for each ML model. I observe that most ML models

achieve better performances as more synthetic samples are added. This observation

is also consistent with our previous findings, demonstrating the high fidelity of our

synthetic data.
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Figure 4.2: (Top) comparison of TSTR with TRTR scores; (Bottom) TSRTR score.

Table 4.2: Runtime comparisons (hours).

Dataset TimeDiff EHR-M-GAN TimeGAN GT-GAN

MIMIC-III 2.7 18.9 10.8 21.8
MIMIC-IV 2.7 28.8 29.5 47.3
HiRID 2.5 29.7 46.2 58.3
eICU 8.7 87.1 110 59.1

4.5.4.5 NNAA and MIR

As indicated in Table 4.4, I observe that TimeDiff consistently scores around 0.5 for

both AAtest and AAtrain while having low NNAA and MIR scores. This suggests that

TimeDiff produces high-fidelity synthetic samples and does not overfit its training

data. By contrast, although still mostly having low NNAA and MIR scores, all the

baselines have higher AAtest and AAtrain.

4.5.4.6 Ablation Study

I further investigate whether performing multinomial diffusion on missing indicators for

discrete sequence generation is useful. I compare the proposed method with Gaussian

diffusion on the missing indicators, and these post-processing methods are applied to

transform real-valued model predictions into discrete sequences: (1) direct rounding;
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(2) argmax on the softmax of real-valued, one-hot encoded representations4. I compare

these methods on MIMIC-III/IV and eICU. HiRID is excluded from this ablation study

since it is complete and does not contain missing values. Table 4.3 shows that the

synthetic data has much higher utility when multinomial diffusion is adopted.

Table 4.3: Ablation study on generating missing indicators using multinomial diffusion.

Metric Method MIMIC-III MIMIC-IV eICU

with Gaussian and rounding .355±.020 .121±.025 .030±.018
Discriminative Score (↓) with Gaussian and softmax .088±.023 .155 ±.032 .042±.045

with multinomial .028±.023 .030±.022 .015±.007

with Gaussian and rounding .486±.005 .433±.003 .312±.031
Predictive Score (↓) with Gaussian and softmax .472±.004 .434±.002 .320±.035

with multinomial .469±.003 .432±.002 .309±.019

4The synthetic one-hot encoding is not discrete since Gaussian diffusion is used. This method is
also adopted by [85] for the generation of discrete time series with diffusion models.
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Table 4.4: Privacy score evaluations.

Metric Method MIMIC-III MIMIC-IV HiRID eICU

AAtest (∼0.5) TimeDiff .574±.002 .517±.002 .531±.003 .537±.001
EHR-M-GAN .998±.000 1.000±.000 1.000±.000 .977±.000
DSPD-GP .974±.001 .621±.002 .838±.004 .888±.000
DSPD-OU .927±.000 .804±.003 .886±.001 .971±.000
CSPD-GP .944±.001 .623±.002 .958±.002 .851±.001
CSPD-OU .967±.001 .875±.002 .947±.001 .982±.000
GT-GAN .995±.000 .910±.001 .990±.001 .981±.000
TimeGAN .997±.000 .974±.001 .643±.003 1.000±.000
RCGAN .983±.001 .999±.000 1.000±.000 1.000±.000
Real Data .552±.002 .497±.002 .511±.006 .501±.002

AAtrain (∼0.5) TimeDiff .573±.002 .515±.002 .531±.002 .531±.002
EHR-M-GAN .999±.000 1.000±.000 1.000±.000 .965±.002
DSPD-GP .968±.002 .620±.003 .851±.005 .888±.001
DSPD-OU .928±.001 .788±.003 .876±.002 .971±.000
CSPD-GP .940±.002 .629±.005 .965±.004 .852±.001
CSPD-OU .966±.001 .880±.003 .945±.002 .983±.000
GT-GAN .995±.001 .907±.002 .989±.001 .981±.000
TimeGAN .997±.000 .969±.003 .651±.004 1.000±.000
RCGAN .984±.001 .999±.000 1.000±.000 1.000±.000
Real Data .286±.003 .268±.004 .327±.006 .266±.002

NNAA (↓) TimeDiff .002±.002 .002±.002 .004±.003 .006±.002
EHR-M-GAN .000±.000 .000±.000 .000±.000 .012±.003
DSPD-GP .005±.003 .003±.003 .013±.007 .001±.001
DSPD-OU .001±.001 .016±.004 .010±.002 .000±.000
CSPD-GP .004±.002 .007±.005 .008±.004 .001±.001
CSPD-OU .001±.001 .005±.003 .002±.001 .001±.001
GT-GAN .001±.000 .004±.002 .001±.001 .000±.000
TimeGAN .000±.000 .005±.003 .008±.004 .000±.000
RCGAN .001±.000 .000±.000 .000±.000 .000±.000
Real Data .267±.004 .229±.003 .184±.006 .235±.003

MIR (↓) TimeDiff .191±.008 .232±.048 .236±.179 .227±.021
EHR-M-GAN .025±.007 .435±.031 .459±.161 .049±.006
DSPD-GP .032±.021 .050±.009 .106 ±.064 .000±.000
DSPD-OU .060±.032 .007±.006 .005±.005 .000±.000
CSPD-GP .060±.028 .034±.017 .004±.004 .000±.000
CSPD-OU .066±.046 .016±.020 .005±.003 .000±.000
GT-GAN .005±.002 .046±.013 .109±.057 .000±.000
TimeGAN .010±.002 .173±.020 .624±.006 .000±.000
RCGAN .013±.002 .277±.049 .063±.013 .000±.000
Real Data .948±.000 .929±.005 .737±.011 .927±.00157



4.6 Appendix

4.6.1 Datasets

In this section, we provide further information on the datasets used in this study and the

corresponding data processing procedures. Unless specified otherwise, all datasets are

normalized by min-max scaling for model training, and the minimums and maximums

are calculated feature-wise, i.e., we normalize each feature by its corresponding sample

minimum and maximum, and this procedure is applied across all the features. For all

EHR datasets, we extract the in-hospital mortality status as our class labels for TSTR

and TSRTR evaluations.

Table 4.5: Dataset statistics.

Dataset Sample Size Number of Features Sequence Length Missing (%) Mortality Rate (%)

Stocks 3,773 6 24 0 —
Energy 19,711 28 24 0 —
MIMIC-III 26,150 15 25 17.9 7.98
MIMIC-IV 21,593 11 72 7.9 23.67
HiRID 6,709 8 100 0 16.83
eICU 62,453 9 276 10.5 10.63

4.6.1.1 Stocks & Energy

We use the Stocks and Energy datasets for a fair comparison between TimeDiff

and the existing GAN-based time-series generation methods. Both datasets can be

downloaded from TimeGAN’s official repository.

Stocks: The Stocks dataset contains daily Google stock data recorded between 2004

and 2019. It contains features such as volume, high, low, opening, closing, and adjusted

closing prices. Each data point represents the value of those six features on a single

day. The dataset is available online and can be accessed from the historical Google

stock price on Yahoo.
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Energy: The Energy dataset is from the UCI Appliances energy prediction data. It

contains multivariate continuous-valued time-series and has high-dimensional, corre-

lated, and periodic features. This dataset can be obtained from UCI machine learning

repository.

To prepare both datasets for training and ensure consistency with previous approaches

for a fair comparison, we use the same procedure as TimeGAN. We then apply training

and testing splits for both datasets. For the Stocks dataset, we use 80% for training

and 20% for testing. For the Energy dataset, we use 75% for training and 25% for

testing.

4.6.1.2 MIMIC-III

The Medical Information Mart for Intensive Care-III (MIMIC-III) is a single-center

database consisting of a large collection of EHR data for patients admitted to critical

care units at Beth Israel Deaconess Medical Center between 2001 and 2012. The

dataset contains information such as demographics, lab results, vital measurements,

procedures, caregiver notes, and patient outcomes. It contains data for 38,597 distinct

adult patients and 49,785 hospital admissions.

Variable Selection: In our study, we use the following vital sign measurements from

MIMIC-III: heart rate (beats per minute), systolic blood pressure (mm Hg), diastolic

blood pressure (mm Hg), mean blood pressure (mm Hg), respiratory rate (breaths

per minute), body temperature (Celsius), and oxygen saturation (%). To ensure con-

sistency and reproducibility, we adopt the scripts in official MIMIC-III repository for

data pre-processing that selects the aforementioned features based on itemid and filters

potential outliers5. We then extract records of the selected variables within the first

5For sake of reproducibility, the thresholds for the outliers are defined by the official repository.
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24 hours of a patient’s unit stay at one-hour intervals, where the initial measurement

is treated as time step 0. This procedure gives us a multivariate time series of length

25 for each patient.

Cohort Selection: We select our MIMIC-III study cohort by applying the outlier

filter criteria adopted by the official MIMIC-III repository. The filtering rules can be

accessed here. We select patients based on the unit stay level using icustay id. We

only include patients who have spent at least 24 hours in their ICU stay.

We use 80% of the dataset for training and 20% for testing while ensuring a similar

class ratio between the splits.

4.6.1.3 MIMIC-IV

The Medical Information Mart for Intensive Care-IV (MIMIC-IV) is a large collection

of data for over 40,000 patients at intensive care units at the Beth Israel Deaconess

Medical Center. It contains retrospectively collected medical data for 299,712 patients,

431,231 admissions, and 73,181 ICU stays. It improves upon the MIMIC-III dataset,

incorporating more up-to-date medical data with an optimized data storage structure.

In our study, we use vital signs for time-series generation. To simplify the data-cleaning

process, we adopt scripts from the MIMIC Code Repository.

Variable Selection: We extracted five vital signs for each patient from MIMIC-IV.

The selected variables are heart rate (beats per minute), systolic blood pressure (mm

Hg), diastolic blood pressure (mm Hg), respiratory rate (breaths per minute), and

oxygen saturation (%). We extract all measurements of each feature within the first 72

hours of each patient’s ICU admission. Similar to MIMIC-III, we encode the features

using the method described in Section 4.4.2 for model training.

Cohort Selection: Similar to MIMIC-III, we select our MIMIC-IV study cohort by
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applying filtering criteria provided by the official MIMIC-IV repository. The criteria

can be accessed here. We also select patients at the unit stay level and include those

who stayed for at least 72 hours in ICU.

We use 75% for training and 25% for testing, and the class ratio is kept similar across

the training and testing data.

4.6.1.4 eICU

The eICU Collaborative Research Database is a multi-center database with 200,859

admissions to intensive care units monitored by the eICU programs across the United

States. It includes various information for the patients, such as vital sign measure-

ments, care plan documentation, severity of illness measures, diagnosis information,

and treatment information. The database contains 139,367 patients admitted to criti-

cal care units between 2014 and 2015.

Variable Selection: We select four vital sign variables from the vitalPeriodic table in

our study: heart rate (beats per minute), respiratory rate (breaths per minute), oxygen

saturation (%), and mean blood pressure (mm Hg). The measurements are recorded

as one-minute averages and are then stored as five-minute medians. We extract values

between each patient’s first hour of the ICU stay and the next 24 hours for the selected

variables. Since the measurements are recorded at 5-minute intervals, we obtain a

multivariate time series of length 276 for each patient in our study cohort.

Cohort Selection: We select patients for our eICU study cohort by filtering the time

interval. Specifically, we include patients who stay for at least 24 hours in their ICU

stay, and the time series measurements are extracted. We did not use filtering criteria

for time series in eICU. This is a design choice that allows us to evaluate TimeDiff

when unfiltered time series are used as the input. We also select patients at the unit
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stay level.

We use 75% for training and 25% for testing while ensuring the class ratio is similar

between the two data splits.

4.6.1.5 HiRiD

The high time resolution ICU dataset (HiRID) is a publicly accessible critical care

dataset consisting of data for more than 33,000 admissions to the Department of In-

tensive Care Medicine of the Bern University Hospital, Switzerland. It includes de-

identified demographic information and 712 physiological variables, diagnostic tests,

and treatment information between January 2008 to June 2016. The physiological

measurements are recorded at 2-minute intervals.

Variable Selection: We consider seven variables in our study: heart rate (beats per

minute), invasive systolic arterial pressure (mm Hg), invasive diastolic arterial pressure

(mm Hg), invasive mean arterial pressure (mm Hg), peripheral oxygen saturation (%),

ST elevation (mm), and central venous pressure (mm Hg). We selected the recorded

data during the first 200 minutes of each patient’s ICU stay.

Cohort Selection: We include patients who stayed for at least 200 minutes in our

HiRID study cohort. Unlike all aforementioned EHR datasets, our HiRID study cohort

only includes patients without missing values. This design choice allows us to evaluate

the performance of TimeDiff in the absence of missing values on EHR datasets.

We use 80% of our study cohort as the training data and 20% as the testing data, and

the mortality rate is kept similar between the splits.
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4.6.2 Baselines

We reference the following source code for implementations of our baselines.

Table 4.6: Source code links for all baselines.

Method Source Code Link

EHR-M-GAN [111] LINK
DSPD/CSPD (GP or OU) [96] LINK
GT-GAN [92] LINK
TimeGAN [91] LINK
RCGAN [87] LINK
C-RNN-GAN [86] LINK
T-Forcing [123, 124] LINK
P-Forcing [125] LINK

4.6.3 Model Training and Hyperparameter Selection

4.6.3.1 Neural Controlled Differential Equation

We attempted to use neural controlled differential equation (NCDE) [93] as our archi-

tecture for sθ. We expect the continuous property of the NCDE to yield better results

for time-series generation. NCDE is formally defined as the following:

Definition 1. Suppose we have a time-series s = {(r1,x1), ..., (rn,xn)} and D is the

dimensionality of the series. Let Y : [r1, rn] → RD+1 be the natural cubic spline with

knots at r1, ..., rn such that Yti = (xi, ri). s is often assumed to be a discretization

of an underlying process that is approximated by Y . Let fθ : Rh → Rh×(D+1) and

ζθ : RD+1 → Rh be any neural networks, where h is the size of hidden states. Let

zr1 = ζθ(r1,x1)

63

https://github.com/jli0117/ehrMGAN
https://github.com/morganstanley/MSML/tree/main/papers/Stochastic_Process_Diffusion
https://github.com/Jinsung-Jeon/GT-GAN
https://github.com/jsyoon0823/TimeGAN
https://github.com/ratschlab/RGAN
https://github.com/cjbayron/c-rnn-gan.pytorch
https://github.com/mojesty/professor_forcing/tree/master
https://github.com/mojesty/professor_forcing/tree/master


The NCDE model is then defined to be the solution to the following CDE:

zr = zr1 +

∫ r

r1

fθ(zs)dYs for r ∈ (r1, rn] (4.17)

where the integral is a Riemann–Stieltjes integral.

However, we find that this approach suffers from high computational cost since it needs

to calculate cubic Hermite spline and solve the CDE for every noisy sample input during

training. It thus has low scalability for generating time-series data with long sequences.

Nevertheless, we believe this direction is worth exploring for future research.

4.6.3.2 TimeDiff Training

The diffusion model is trained using Ltrain in Equation (4.15). We set λ to 0.01. We use

cosine scheduling [132] for the variances
{
β(t)
}T
t=1

. We apply the exponential moving

average to model parameters with a decay rate of 0.995. We use Adam optimizer [133]

with a learning rate of 0.00008, β1 = 0.9, and β2 = 0.99. We set the total diffusion step

T to be 1000, accumulate the gradient for every 2 steps, use 2 layers for the BRNN,

and use a batch size of 32 across all our experiments.

4.6.3.3 Baselines

For a fair comparison, we use a 2-layer RNN with a hidden dimension size of four

times the number of input features. We utilize the LSTM as our architecture whenever

applicable. We use a hidden dimension size of 256 for the eICU dataset.

For deterministic models such as the T-Forcing and P-Forcing, we uniformly sample

the initial data vector from the real training data. We subsequently use the initial data

vector as an input to the deterministic models to generate the synthetic sequence by

unrolling.
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For stochastic process diffusion, we set gp sigma to be 0.1 for Gaussian process (GP)

and ou theta to be 0.5 for Ornstein-Uhlenbeck (OU) process. For discrete diffusion,

we set the total diffusion step at 1000. We use Adam optimizer with a learning rate of

0.00001 and batch size of 32 across all the experiments.

4.6.3.4 Software

We set the seed to 2023 and used the following software for our experiments.

Table 4.7: Software packages.

Method Software

TimeDiff PyTorch 2.0.1
EHR-M-GAN [111] TensorFlow 1.14.0
DSPD/CSPD (GP or OU) [96] PyTorch 2.0.1
GT-GAN [92] PyTorch 2.0.0
TimeGAN [91] TensorFlow 1.10.0
RCGAN [87] TensorFlow 1.10.0
C-RNN-GAN [86] PyTorch 2.0.1
T-Forcing [123, 124] PyTorch 1.0.0
P-Forcing [125] PyTorch 1.0.0

4.6.4 Evaluation Metrics

4.6.4.1 Discriminative and predictive scores

To ensure consistency with results obtained from TimeGAN and GT-GAN, we adopt

the same source code from TimeGAN for calculating discriminative scores. We train a

GRU time-series classification model to distinguish between real and synthetic samples,

and |0.5− Accuracy| is used as the score.

For predictive scores, we use the implementation from GT-GAN, which computes the

mean absolute error based on the next step vector prediction (see Appendix D of the

GT-GAN paper [92]). For consistency, we compute the predictive scores for the Stocks
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and Energy datasets by employing the implementation from TimeGAN that calculates

the error for the next step scalar prediction. We apply standardization to the inputs of

the discriminator and predictor and use linear activation for the predictor for all EHR

datasets.

4.6.4.2 t-SNE

We perform hyperparameter search on the number of iterations, learning rate, and

perplexity to optimize the performance of t-SNE [134]. We use 300 iterations, per-

plexity 30, and scaled learning rate [135]. We flatten the input data along the feature

dimension, perform standardization, and then apply t-SNE directly to the data with-

out using any summary statistics. We uniformly randomly select 2000 samples from

the synthetic, real training, and real testing data for t-SNE visualizations on the eICU,

MIMIC-III, MIMIC-IV, and Energy datasets. For the HiRID and Stocks dataset, we

use 1000 and 700 samples, respectively, due to the limited size of real testing data.

4.6.4.3 In-hospital mortality prediction

Train on Synthetic, Test on Real (TSTR): We use the default hyperparameters

for the six ML models using the scikit-learn software package. The models are trained

using two input formats: (1) raw multivariate time-series data flattened along the

feature dimension; (2) summary statistics for each feature (the first record since ICU

admission, minimum, maximum, record range, mean, standard deviation, mode, and

skewness). After training, the models are evaluated on real testing data in terms of

AUC.

Train on Synthetic and Real, Test on Real (TSRTR): To evaluate the effect of

the increased proportion of the synthetic samples for training on model performance, we

uniformly randomly sample 2,000 real training data from our training set and use this
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subset to train TimeDiff. After training of TimeDiff is complete, we subsequently

add different amounts of the synthetic samples to the 2,000 real samples to train ML

models for in-hospital mortality prediction. We set the synthetic percentages to be

0.1, 0.3, 0.5, 0.7, 0.9. In other words, the ML models are trained with at most 20,000

samples (18,000 synthetic and 2,000 real). This evaluation also simulates the scenario

where synthetic samples from TimeDiff are used for data augmentation tasks in

medical applications. Similar to computing the TSTR score, we train the ML models

using either raw time-series data or summary statistics of each feature as the input.

Results obtained using summary statistics as the input are presented in later sections.

4.6.4.4 NNAA Risk

We calculate the NNAA risk score [127] by using the implementation from this reposi-

tory. Similar to performing t-SNE, we flatten the data along the feature dimension and

apply standardization for preprocessing. The scaled datasets are then used to calculate

the NNAA risk score.

For reference, we describe the components of the NNAA score below.

Definition 2. Let ST = {x(1)
T , ..., x

(n)
T }, SE = {x(1)

E , ..., x
(n)
E } and SS = {x(1)

S , ..., x
(n)
S }

be data samples with size n from real training, real testing, and synthetic datasets,

respectively. The NNAA risk is the difference between two accuracies:

NNAA = AAtest − AAtrain, (4.18)

AAtest =
1

2

(
1

n

n∑
i=1

I
{
dES(i) > dEE(i)

}
+

1

n

n∑
i=1

I
{
dSE(i) > dSS(i)

})
, (4.19)

AAtrain =
1

2

(
1

n

n∑
i=1

I
{
dTS(i) > dTT(i)

}
+

1

n

n∑
i=1

I
{
dST(i) > dSS(i)

})
, (4.20)
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where I{·} is the indicator function, and

dTS(i) = min
j

∥∥∥x(i)
T − x

(j)
S

∥∥∥ , dST(i) = min
j

∥∥∥x(i)
S − x

(j)
T

∥∥∥ , (4.21)

dES(i) = min
j

∥∥∥x(i)
E − x

(j)
S

∥∥∥ , dSE(i) = min
j

∥∥∥x(i)
S − x

(j)
E

∥∥∥ , (4.22)

dTT(i) = min
j,j ̸=i

∥∥∥x(i)
T − x

(j)
T

∥∥∥, dSS(i) = min
j,j ̸=i

∥∥∥x(i)
S − x

(j)
S

∥∥∥ , dEE(i) = min
j,j ̸=i

∥∥∥x(i)
E − x

(j)
E

∥∥∥ .
(4.23)

In our experiments, there are instances where AAtrain > AAtest. To consistently obtain

positive values, we use NNAA = |AAtest − AAtrain| for our evaluations.

4.6.4.5 MIR

Our implementation of the MIR score [128] follows the source code in this repository.

To keep a similar scale of the distance across different datasets, we apply normalization

on the computed distances so that they are in the [0,1] range. We use a threshold of

0.08 for the MIMIC-IV, MIMIC-III, and HiRID datasets. We set the decision threshold

to 0.005 for eICU. All the input data is normalized to the [0,1] range.
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objective reinforcement learning: Novel design techniques”. In: 2013 IEEE Sym-
posium on Adaptive Dynamic Programming and Reinforcement Learning (AD-
PRL). IEEE. 2013, pp. 191–199.

[20] Robert L McNamara et al. “Predicting in-hospital mortality in patients with
acute myocardial infarction”. In: Journal of the American College of Cardiology
68.6 (2016), pp. 626–635.

[21] Fred H Edwards et al. “Development and validation of a risk prediction model
for in-hospital mortality after transcatheter aortic valve replacement”. In: JAMA
Cardiology 1.1 (2016), pp. 46–52.

70



[22] Gregg C Fonarow et al. “Risk stratification for in-hospital mortality in acutely
decompensated heart failure: classification and regression tree analysis”. In:
JAMA 293.5 (2005), pp. 572–580.

[23] Steven L Barriere and Stephen F Lowry. “An overview of mortality risk predic-
tion in sepsis”. In: Critical Care Medicine 23.2 (1995), pp. 376–393.

[24] Ali A El-Solh et al. “Comparison of in-hospital mortality risk prediction models
from COVID-19”. In: PloS One 15.12 (2020), e0244629.

[25] Sujoy Kar et al. “Multivariable mortality risk prediction using machine learning
for COVID-19 patients at admission (AICOVID)”. In: Scientific Reports 11.1
(2021), p. 12801.

[26] William A Knaus et al. “APACHE—acute physiology and chronic health evalu-
ation: a physiologically based classification system”. In: Critical Care Medicine
9.8 (1981), pp. 591–597.

[27] J L Vincent et al. The SOFA (Sepsis-related Organ Failure Assessment) score to
describe organ dysfunction/failure: On behalf of the Working Group on Sepsis-
Related Problems of the European Society of Intensive Care Medicine (see con-
tributors to the project in the appendix). 1996.

[28] Mervyn Singer et al. “The third international consensus definitions for sepsis
and septic shock (Sepsis-3)”. In: JAMA 315.8 (2016), pp. 801–810.

[29] William A Knaus et al. “APACHE II: a severity of disease classification system.”
In: Critical Care Medicine 13.10 (1985), pp. 818–829.

[30] Jean-Roger Le Gall et al. “A simplified acute physiology score for ICU patients.”
In: Critical Care Medicine 12.11 (1984), pp. 975–977.

[31] Jack E Zimmerman et al. “Acute Physiology and Chronic Health Evaluation
(APACHE) IV: hospital mortality assessment for today’s critically ill patients”.
In: Critical Care Medicine 34.5 (2006), pp. 1297–1310.

[32] William S Cleveland. “Robust locally weighted regression and smoothing scat-
terplots”. In: Journal of the American Statistical Association 74.368 (1979),
pp. 829–836.

[33] Alistair EW Johnson, Andrew A Kramer, and Gari D Clifford. “A new severity
of illness scale using a subset of acute physiology and chronic health evalua-

71



tion data elements shows comparable predictive accuracy”. In: Critical Care
Medicine 41.7 (2013), pp. 1711–1718.

[34] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. “A review on genetic
algorithm: past, present, and future”. In: Multimedia Tools and Applications 80
(2021), pp. 8091–8126.

[35] James Kennedy and Russell Eberhart. “Particle swarm optimization”. In: Pro-
ceedings of ICNN’95-International Conference on Neural Networks. Vol. 4. IEEE.
1995, pp. 1942–1948.

[36] Min Hyuk Choi et al. “Mortality prediction of patients in intensive care units
using machine learning algorithms based on electronic health records”. In: Sci-
entific Reports 12.1 (2022), p. 7180.

[37] Yasser El-Manzalawy et al. “OASIS+: leveraging machine learning to improve
the prognostic accuracy of OASIS severity score for predicting in-hospital mor-
tality”. In: BMC Medical Informatics and Decision Making 21.1 (2021), p. 156.

[38] Scott Levin et al. “Machine-learning-based electronic triage more accurately dif-
ferentiates patients with respect to clinical outcomes compared with the emer-
gency severity index”. In: Annals of Emergency Medicine 71.5 (2018), pp. 565–
574.

[39] Maximiliano Klug et al. “A gradient boosting machine learning model for pre-
dicting early mortality in the emergency department triage: devising a nine-
point triage score”. In: Journal of General Internal Medicine 35 (2020), pp. 220–
227.

[40] Woo Suk Hong, Adrian Daniel Haimovich, and R Andrew Taylor. “Predicting
hospital admission at emergency department triage using machine learning”. In:
PloS One 13.7 (2018), e0201016.
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